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Algebraic and Transcendental Numbers

• Algebraic: can be generated from algebraic equations.

An algebraic number is a number that is the root of some polynomial
with integer coefficients; that is, 𝛼 is algebraic if there exist a
polynomial f ∈ Z[x] such that

a0 + a1𝛼 + · · · + an𝛼n = 0

where 𝛼i ∈ Z for each i = 0, . . . , n and an ≠ 0.

• A number is said to be transcendental if it is not algebraic.
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Algebraic and Transcendental Numbers

• Any rational number k = p/q is algebraic because it is the root
of the equation

f (x) = qx − p.

• √
2 is algebraic because it is a root of the equation

f (x) = x2 − 2.

• i is algebraic because it is a root of the equation

f (x) = x2 + 1.

• Let 𝜁n be a primitive n-th root of unity. Then 𝜁n is algebraic
because it is a root of the equation

f (x) = xn − 1.
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Existence of Transcendental Numbers

Do transcendental numbers even exist in the first place?

(Yes!)

The algebraic numbers form a countable set.

Proof.
Given an integer N and integer coefficients a0, a1, . . . , aN , we see
that the polynomial

aNxN + · · · + a1x + a0 (1)

has at most N many solutions (from the Fundamental Theorem of
Algebra). Denote AN,a0,...,aN to be the set of roots of (1), so that
|AN,a0,...,aN | ≤ N , which is clearly countable. □
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Existence of Transcendental Numbers

Proof continued…
Let BN be the set of roots of polynomials of degree N .

Therefore, it is
easy to see that

BN =
⋃

(aN ,aN−1,...,a0 ) ∈Z\{0}×Z×···×Z
AN,a0,...,aN ,

which is a countable union of countable sets. Therefore, BN is also
countable.
Finally, the set of algebraic numbers is exactly

A =
⋃
n∈N

Bn,

which is, again, a countable union of countable sets. So, A is
countable. □
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Existence of Transcendental Numbers

• Since R is uncountable, this implies that the set of
transcendental numbers must be uncountable.

In other words, if you were to draw a real number out of a hat, it is
more likely to be transcendental than algebraic!
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Proof of transcendence
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Proof outline

We outline the proof with two main steps that we will explore in
greater detail.

1. Show that

ex ·
∫ x

0
e−t · f (t) dt = ex · f (0) − f (x) + ex

∫ x

0
e−t · f ′(t) dt

and consider a suitable function for f (t) to define another
series of functions F (x).

2. By choosing a suitable function for f (t), arrive at a
contradiction that shows that e must indeed be transcendental.
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Proof (part I)

ex ·
∫ x

0
e−t · f (t) dt = ex · f (0) − f (x) + ex

∫ x

0
e−t · f ′(t) dt

We begin with integration by parts on the integral.∫ x

0
e−t · f (t) dt =

(∫
e−t

)
· f (t)

�����x
0

+
∫ x

0
e−t · f ′(t) dt

= f (0) − e−x · f (x) +
∫ x

0
e−t · f ′(t) dt .

Therefore,

ex ·
∫ x

0
e−t · f (t) dt = ex · f (0) − f (x) + ex

∫ x

0
e−t · f ′(t) dt,

as required.
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Proof (part I)

ex ·
∫ x

0
e−t · f (t) dt = ex · f (0) − f (x) + ex

∫ x

0
e−t · f ′(t) dt

We can see that by replacing f (t) on the left hand side with f ′(t),
we indeed obtain the middle expression. In other words, we have
that

ex
(∫ x

0
e−t · f (t) dt −

∫ x

0
e−t · f ′(t) dt

)
= ex · f (0) − f (x) .
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Proof (part I)

ex
(∫ x

0
e−t · f (t) dt −

∫ x

0
e−t · f ′(t) dt

)
= ex · f (0) − f (x) .

Let’s explore this relation a little bit. By replacing f (i) with f (i+1) , we
can see that

ex
(∫ x

0
e−t · f (t) dt −

∫ x

0
e−t · f ′(t) dt

)
= ex · f (0) − f (x),

ex
(∫ x

0
e−t · f ′(t) dt −

∫ x

0
e−t · f ′′(t) dt

)
= ex · f ′(0) − f ′(x),

. . .

ex
(∫ x

0
e−t · f (k ) (t) dt −

∫ x

0
e−t · f (k+1) (t) dt

)
= ex · f (k ) (0) − f (k ) (x) .



14/33

Proof (part I)

Therefore, we see that

ex
(∫ x

0
e−t · f (t) dt −

∫ x

0
e−t · f (k+1) (t) dt

)
= ex

k∑︁
i=0

f (i) (0)−
k∑︁
i=0

f (i) (x) .

We make two observations:
• If we can freely choose f , ideally we want to choose f in such a
way where taking high enough derivatives eventually land us
at 0.

• By letting F (x) = ∑∞
i=0 f

(i) (x), we can re-express the equality
above.

Therefore, we will define f to be some polynomial; the construction
of f is yet to be determined but we just know that it is some
polynomial.
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Proof (part I)

Therefore, as k → ∞,
∫ x
0 e−t · f (k+1) (t) dt → 0.

We let
F (x) = ∑∞

i=0 f
(i) (x) such that we can write the previous expression

exactly as

ex ·
∫ x

0
e−t · f (t) dt = ex · F (0) − F (x).

This finishes the first part of the proof; we now proceed with the
proof.



15/33

Proof (part I)

Therefore, as k → ∞,
∫ x
0 e−t · f (k+1) (t) dt → 0. We let

F (x) = ∑∞
i=0 f

(i) (x) such that we can write the previous expression
exactly as

ex ·
∫ x

0
e−t · f (t) dt = ex · F (0) − F (x).

This finishes the first part of the proof; we now proceed with the
proof.



15/33

Proof (part I)

Therefore, as k → ∞,
∫ x
0 e−t · f (k+1) (t) dt → 0. We let

F (x) = ∑∞
i=0 f

(i) (x) such that we can write the previous expression
exactly as

ex ·
∫ x

0
e−t · f (t) dt = ex · F (0) − F (x).

This finishes the first part of the proof; we now proceed with the
proof.



16/33

Proof (part II)

As with most (if not all) transcendental proofs, we assume that e is
algebraic. Therefore, there exist some polynomial A(t) with integer
coefficients aj (with a0, an ≠ 0) such that A(e) = 0; that is,

a0 + a1e + a2e2 + · · · + anen = 0.

Here, we can generate a series of equalities by setting x = k for each
k = 0, 1, 2, . . . , n; that is,

ake
k
∫ k

0
e−t · f (t) dt = ake

k · F (0) − ak · F (k)

or
n∑︁

k=0

ake
k
∫ k

0
e−t · f (t) dt = F (0)

n∑︁
k=0

ake
k −

n∑︁
k=0

ak · F (k) .
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Proof (part II)

This is equivalent to saying

n∑︁
k=0

ake
k
∫ k

0
e−t · f (t) dt = −

n∑︁
k=0

ak · F (k)

since
∑n

k=0 ake
k = 0.

We are now in a position to carefully choose f . How could we
choose such a polynomial?
Let’s explore the left side a little bit first! Our goal is to find some
insight into how big the left side grows.
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Proof (part II)

n∑︁
k=0

ake
k
∫ k

0
e−t · f (t) dt = −

n∑︁
k=0

ak · F (k)

We see that����� n∑︁
k=0

ake
k
∫ k

0
e−t · f (t) dt

����� ≤ n∑︁
k=0

|akek |·
�����∫ k

0
e−t · f (t) dt

����� .

• How big does the integral grow? Since k ≤ n, then we have that�����∫ k

0
e−t · f (t) dt

����� ≤ ����∫ n

0
e−t · f (t) dt

���� ≤ ∫ n

0

��e−t · f (t)�� dt .
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Proof (part II)

Let’s try bounding
��e−t · f (t)�� on the interval [0, n].

• Since e−t is continuous on the closed interval [0, n], we know
that e−t attains a maximum on this interval. Let’s call itM.

• Therefore, |e−t · f (t) | ≤ M · |f (t) |.
• In other words, we obtain the bound�����∫ k

0
e−t · f (t) dt

����� ≤ ∫ n

0
M · |f (t) | dt .

Thus, if we can force f to have a maximum on the interval [0, n],
then we can achieve a nice bound on the overall integral.
What about the right hand side?



19/33

Proof (part II)

Let’s try bounding
��e−t · f (t)�� on the interval [0, n].

• Since e−t is continuous on the closed interval [0, n], we know
that e−t attains a maximum on this interval. Let’s call itM.

• Therefore, |e−t · f (t) | ≤ M · |f (t) |.
• In other words, we obtain the bound�����∫ k

0
e−t · f (t) dt

����� ≤ ∫ n

0
M · |f (t) | dt .

Thus, if we can force f to have a maximum on the interval [0, n],
then we can achieve a nice bound on the overall integral.
What about the right hand side?



19/33

Proof (part II)

Let’s try bounding
��e−t · f (t)�� on the interval [0, n].

• Since e−t is continuous on the closed interval [0, n], we know
that e−t attains a maximum on this interval. Let’s call itM.

• Therefore, |e−t · f (t) | ≤ M · |f (t) |.

• In other words, we obtain the bound�����∫ k

0
e−t · f (t) dt

����� ≤ ∫ n

0
M · |f (t) | dt .

Thus, if we can force f to have a maximum on the interval [0, n],
then we can achieve a nice bound on the overall integral.
What about the right hand side?



19/33

Proof (part II)

Let’s try bounding
��e−t · f (t)�� on the interval [0, n].

• Since e−t is continuous on the closed interval [0, n], we know
that e−t attains a maximum on this interval. Let’s call itM.

• Therefore, |e−t · f (t) | ≤ M · |f (t) |.
• In other words, we obtain the bound�����∫ k

0
e−t · f (t) dt

����� ≤ ∫ n

0
M · |f (t) | dt .

Thus, if we can force f to have a maximum on the interval [0, n],
then we can achieve a nice bound on the overall integral.
What about the right hand side?



19/33

Proof (part II)

Let’s try bounding
��e−t · f (t)�� on the interval [0, n].

• Since e−t is continuous on the closed interval [0, n], we know
that e−t attains a maximum on this interval. Let’s call itM.

• Therefore, |e−t · f (t) | ≤ M · |f (t) |.
• In other words, we obtain the bound�����∫ k

0
e−t · f (t) dt

����� ≤ ∫ n

0
M · |f (t) | dt .

Thus, if we can force f to have a maximum on the interval [0, n],
then we can achieve a nice bound on the overall integral.
What about the right hand side?



20/33

Proof (part II)

n∑︁
k=0

ake
k
∫ k

0
e−t · f (t) dt = −

n∑︁
k=0

ak · F (k)

Recall that F (k) =
∞∑︁
i=0

f (i) (k). Can we make this sum arbitrarily

large?

• Firstly, we see that k ranges from 0 to n. This tells us that we
might want to consider a product of linear polynomials; that is,
consider

g(x) = x (x − 1) (x − 2) · · · (x − n)

since g(k) = 0 for each k = 0, . . . , n.
• Can we say anything about f (i) (k)?
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Proof (part II)

• If we differentiate x (x − 1) (x − 2) · · · (x − n) once, then g′(0)
simply depends on one term since every other term must
contain a factor of x .

• If we differentiate x2(x − 1)2 · · · (x − n)2 once, then
g′(0) = g′(1) = · · · = g′(n).

• If we differentiate x3(x − 1)3 · · · (x − n)3 once, then
g′(0) = g′(1) = · · · = g′(n).

• However, if we differentiate x3 (x − 1)3 · · · (x − n)3 twice, then
we also get g′′ (0) = g′′ (1) = · · · = g′′ (n).

Perhaps, we’d want to set f (x) = xq (x − 1)q . . . (x − n)q for some
large enough q that we can freely choose…
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Proof (part II)

• Since x (x − 1) · · · (x − n) is continuous on the interval [0, n],
then such a function attains a maximum – say N .

• Therefore, we can place a bound on the previous integral to get�����∫ k

0
e−t · f (t) dt

����� ≤ ∫ n

0
M · Nq dt = M · Nqn.

Hmm… ideally, we want this bound to be arbitrarily small. We can
adjust this such that

f (x) = xq (x − 1)q · · · (x − n)q
q!

since the factorial function grows much faster than the exponential
functions. Thus, as q → ∞, the bound approaches 0.
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Proof (part II)

f (x) = xq (x − 1)q . . . (x − n)q
q!

Now, what about f (i) (k)?

• For each k, f (i) (k) = 0 if i < q − 1.
• If i = q − 1, we also see that f (q−1) (k) = 0 for each k = 0, . . . , n.

• This doesn’t give us much to work with. But removing one of
the powers of x gives us a nice characterisation: it turns out that

f (q−1) (0) = (q − 1)! · (−1)q (−2)q · · · (−n)q
q!

.

• To clean this up, we can refine the denominator to be (q − 1)! so
that f (q−1) (0) gives a nice expression.

• Therefore, refining f gives us

f (x) = xq−1(x − 1)q · · · (x − n)q
(q − 1)! .
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Proof (part II)

We want to now focus on making some ground with F (k) using our
refined formulation for f (k).

We saw that
• f (q−1) (0) = (−1)q (−2)q . . . (−n)q.
• f (i) (k) = 0 for all i < q − 1.
• What about for all other values of i and k?

• If k ≠ 0, then clearly f (q−1) (k) = 0.
• If i ≥ q and k ≠ 0, then the term that remains must have had

(x − k)q differentiated q times, leaving us with a factor of q! in
the numerator. But this implies that

f (q) (k) = q! · X
(q − 1)! ,

for some integer X . In other words, f (i) (k) is an integer multiple
of q.
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Proof (part II)

Therefore, what we have in F (k) are some integral terms that is
divisible by q and f (q−1) (0).

• This tells us that F (k) is an integer and so, ak · F (k) is also an
integer. If we can now show that the sum is necessarily
non-zero for large enough q, then we are done (why?).

• Note that
n∑︁

k=0

ak · F (k)

is composed of terms that are divisible by q and f (q−1) (0). If we
can enforce f (q−1) (0) to not be divisible by q, then we are
effectively there!

• Recall that f (q−1) (0) = (−1)q · (n!)q . If q > n and prime, then q
cannot appear in the prime factorisation of n! which implies
that it cannot appear in the factorisation of (n!)q . Thus, we let
q > n be prime.
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Proof (part II)

How do we ensure that a0 · F (k) is not a multiple of q?

• We first showed that F (k) could not be a multiple of q.
• It is still possible that a0 is a multiple of q. The easy fix is to
enforce q > |a0 |.

Putting these together, we see that f (q−1) (0) is never a multiple of q;

this implies that the sum
n∑︁

k=0

ak · F (k) is non-zero for large enough q.
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The contradiction!

• On the one hand, we said that����� n∑︁
k=0

ake
k
∫ k

0
e−t · f (t) dt

����� → 0

as q → ∞.

• On the other hand, we also said that

n∑︁
k=0

akF (k)

is a non-zero integer as q → ∞.

This is the contradiction! Therefore, our assumption (that e is
algebraic) must have been incorrect; thus, e is transcendental.
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Putting everything together…

That was a lot to work through, so let’s summarise everything here!
• Suppose that e is algebraic; then there exist a polynomial with
integer coefficients aj (with a0, an ≠ 0) such that

a0 + a1e + · · · + anen = 0.

• Let p > n, a0 be prime and consider the function

f (x) = xp−1(x − 1)p (x − 2)p · · · (x − n)p
(p − 1)! .

• Letting F (x) =
n∑︁
i=0

f (i) (x), we can see that

n∑︁
k=0

ake
k
∫ k

0
e−t · f (t) dt = −

n∑︁
k=0

ak · F (k).
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Putting everything together…

• The contradiction comes from showing that the left side
converges to 0 for large enough p, while the right side is a
non-zero integer for large enough p.



30/33

Lindemann-Weierstrass Theorem
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The Lindemann-Weierstrass Theorem

If {𝛼1, 𝛼2, . . . , 𝛼n} is a collection of algebraic numbers that is linearly
independent over Q, then the set {e𝛼1, e𝛼2, . . . , . . . , e𝛼n} forms a set
such that no element in the set is a root of any non-trivial
polynomial equations with coefficients in Q.

• But note that one can always transform a polynomial with
rational coefficients to a polynomial with integer coefficients.

• Thus, the set {e𝛼1, . . . , e𝛼n} also forms a set such that no
element in the set is a root of any non-trivial polynomial
equations with coefficients in Z.

• But this implies that each e𝛼i is transcendental.
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Proving that e and 𝜋 are transcendental

• Proving that e and 𝜋 are transcendental is a direct consequence
of the theorem.

• The set {1} is a linearly independent set of a single algebraic
number. Therefore, e1 = e is transcendental.

• If 𝜋 were algebraic, then 𝜋 i is also algebraic. But this implies
that the set {1, 𝜋 i} forms a linearly independent set of algebraic
numbers, which implies that the elements of {e1, e𝜋 i} are
themselves transcendental. But e𝜋 i + 1 = 0. Contradiction!
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Concluding Remarks

• In this talk, we work exclusively with transcendence over Q; we
can extend this to other fields too!

• If we define polynomials whose coefficients come from R, then
e and 𝜋 are no longer transcendental since x − e and x − 𝜋 are
polynomials in this polynomial ring.

• Proving transcendence is quite hard! We know that e and 𝜋 are
separately transcendental but we don’t know whether e + 𝜋 is
transcendental.
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