Transcendence of e

1/33 -

Gerald Huang

UNSW Mathematics Society

June 13, 2023

Proof of transcendence Part I Part II

2/33

Lindemann-Weierstrass Theorem

• Algebraic: can be generated from *algebraic* equations.

• Algebraic: can be generated from *algebraic* equations.

An *algebraic number* is a number that is the root of some polynomial with integer coefficients; that is, α is algebraic if there exist a polynomial $f \in \mathbb{Z}[x]$ such that

$$a_0 + a_1\alpha + \dots + a_n\alpha^n = 0$$

where $\alpha_i \in \mathbb{Z}$ for each i = 0, ..., n and $a_n \neq 0$.

• Algebraic: can be generated from *algebraic* equations.

An *algebraic number* is a number that is the root of some polynomial with integer coefficients; that is, α is algebraic if there exist a polynomial $f \in \mathbb{Z}[x]$ such that

$$a_0 + a_1\alpha + \dots + a_n\alpha^n = 0$$

where $\alpha_i \in \mathbb{Z}$ for each i = 0, ..., n and $a_n \neq 0$.

• A number is said to be *transcendental* if it is not algebraic.

 Any rational number k = p/q is algebraic because it is the root of the equation

f(x) = qx - p.

 Any rational number k = p/q is algebraic because it is the root of the equation

f(x) = qx - p.

• $\sqrt{2}$ is algebraic because it is a root of the equation

 $f(x) = x^2 - 2.$

 Any rational number k = p/q is algebraic because it is the root of the equation

f(x) = qx - p.

• $\sqrt{2}$ is algebraic because it is a root of the equation

 $f(x) = x^2 - 2.$

• *i* is algebraic because it is a root of the equation

 $f(x) = x^2 + 1.$

 Any rational number k = p/q is algebraic because it is the root of the equation

$$f(x) = qx - p.$$

• $\sqrt{2}$ is algebraic because it is a root of the equation

 $f(x) = x^2 - 2.$

• *i* is algebraic because it is a root of the equation

 $f(x) = x^2 + 1.$

 Let ζ_n be a primitive n-th root of unity. Then ζ_n is algebraic because it is a root of the equation

$$f(x) = x^n - 1.$$

Do transcendental numbers even exist in the first place?

Do transcendental numbers even exist in the first place? (Yes!)

The algebraic numbers form a *countable* set.

Do transcendental numbers even exist in the first place? (Yes!)

The algebraic numbers form a *countable* set.

Proof.

Given an integer *N* and integer coefficients a_0, a_1, \ldots, a_N , we see that the polynomial

$$a_N x^N + \dots + a_1 x + a_0 \tag{1}$$

has at most *N* many solutions (from the Fundamental Theorem of Algebra).

Do transcendental numbers even exist in the first place? (Yes!)

The algebraic numbers form a *countable* set.

Proof.

Given an integer *N* and integer coefficients a_0, a_1, \ldots, a_N , we see that the polynomial

$$a_N x^N + \dots + a_1 x + a_0 \tag{1}$$

has at most *N* many solutions (from the Fundamental Theorem of Algebra). Denote $A_{N,a_0,...,a_N}$ to be the set of roots of (1), so that $|A_{N,a_0,...,a_N}| \le N$, which is clearly countable.

Proof continued...

Let B_N be the set of roots of polynomials of degree N.

Proof continued...

Let B_N be the set of roots of polynomials of degree N. Therefore, it is easy to see that

$$B_N = \bigcup_{(a_N, a_{N-1}, \dots, a_0) \in \mathbb{Z} \setminus \{0\} \times \mathbb{Z} \times \dots \times \mathbb{Z}} A_{N, a_0, \dots, a_N},$$

which is a countable union of countable sets.

Proof continued...

Let B_N be the set of roots of polynomials of degree N. Therefore, it is easy to see that

$$B_N = \bigcup_{(a_N, a_{N-1}, \dots, a_0) \in \mathbb{Z} \setminus \{0\} \times \mathbb{Z} \times \dots \times \mathbb{Z}} A_{N, a_0, \dots, a_N},$$

which is a countable union of countable sets. Therefore, B_N is also countable.

Finally, the set of algebraic numbers is exactly

$$\mathbb{A}=\bigcup_{n\in\mathbb{N}}B_n,$$

which is, again, a countable union of countable sets. So, $\mathbb A$ is countable.

• Since ℝ is uncountable, this implies that the set of transcendental numbers must be uncountable.

In other words, if you were to draw a real number out of a hat, it is more likely to be transcendental than algebraic!

9/33

Proof of transcendence

Proof outline

We outline the proof with two main steps that we will explore in greater detail.

1. Show that

10/33

$$e^{x} \cdot \int_{0}^{x} e^{-t} \cdot f(t) dt = e^{x} \cdot f(0) - f(x) + e^{x} \int_{0}^{x} e^{-t} \cdot f'(t) dt$$

and consider a suitable function for f(t) to define another series of functions F(x).

2. By choosing a suitable function for f(t), arrive at a contradiction that shows that *e* must indeed be transcendental.

 $e^{x} \cdot \int_{0}^{x} e^{-t} \cdot f(t) dt = e^{x} \cdot f(0) - f(x) + e^{x} \int_{0}^{x} e^{-t} \cdot f'(t) dt$

$$e^{x} \cdot \int_{0}^{x} e^{-t} \cdot f(t) \, dt = e^{x} \cdot f(0) - f(x) + e^{x} \int_{0}^{x} e^{-t} \cdot f'(t) \, dt$$

We begin with integration by parts on the integral.

$$e^{x} \cdot \int_{0}^{x} e^{-t} \cdot f(t) \, dt = e^{x} \cdot f(0) - f(x) + e^{x} \int_{0}^{x} e^{-t} \cdot f'(t) \, dt$$

We begin with integration by parts on the integral.

$$\int_0^x e^{-t} \cdot f(t) \, dt = \left(\int e^{-t} \right) \cdot f(t) \bigg|_0^x + \int_0^x e^{-t} \cdot f'(t) \, dt$$
$$= f(0) - e^{-x} \cdot f(x) + \int_0^x e^{-t} \cdot f'(t) \, dt.$$

$$e^{x} \cdot \int_{0}^{x} e^{-t} \cdot f(t) \, dt = e^{x} \cdot f(0) - f(x) + e^{x} \int_{0}^{x} e^{-t} \cdot f'(t) \, dt$$

We begin with integration by parts on the integral.

$$\int_0^x e^{-t} \cdot f(t) \, dt = \left(\int e^{-t} \right) \cdot f(t) \bigg|_0^x + \int_0^x e^{-t} \cdot f'(t) \, dt$$
$$= f(0) - e^{-x} \cdot f(x) + \int_0^x e^{-t} \cdot f'(t) \, dt.$$

Therefore,

$$e^{x} \cdot \int_{0}^{x} e^{-t} \cdot f(t) dt = e^{x} \cdot f(0) - f(x) + e^{x} \int_{0}^{x} e^{-t} \cdot f'(t) dt,$$

as required.

$$e^{x} \cdot \int_{0}^{x} e^{-t} \cdot f(t) dt = e^{x} \cdot f(0) - f(x) + e^{x} \int_{0}^{x} e^{-t} \cdot f'(t) dt$$

We can see that by replacing f(t) on the left hand side with f'(t), we indeed obtain the middle expression. In other words, we have that

$$e^{x}\left(\int_{0}^{x}e^{-t}\cdot f(t)\,dt - \int_{0}^{x}e^{-t}\cdot f'(t)\,dt\right) = e^{x}\cdot f(0) - f(x).$$

$$e^{x}\left(\int_{0}^{x}e^{-t}\cdot f(t)\,dt - \int_{0}^{x}e^{-t}\cdot f'(t)\,dt\right) = e^{x}\cdot f(0) - f(x).$$

Let's explore this relation a little bit. By replacing $f^{(i)}$ with $f^{(i+1)}$, we can see that

$$e^{x} \left(\int_{0}^{x} e^{-t} \cdot f(t) dt - \int_{0}^{x} e^{-t} \cdot f'(t) dt \right) = e^{x} \cdot f(0) - f(x),$$

$$e^{x} \left(\int_{0}^{x} e^{-t} \cdot f'(t) dt - \int_{0}^{x} e^{-t} \cdot f''(t) dt \right) = e^{x} \cdot f'(0) - f'(x),$$

. . .

$$e^{x}\left(\int_{0}^{x}e^{-t}\cdot f^{(k)}(t)\,dt - \int_{0}^{x}e^{-t}\cdot f^{(k+1)}(t)\,dt\right) = e^{x}\cdot f^{(k)}(0) - f^{(k)}(x).$$

Therefore, we see that

$$e^{x}\left(\int_{0}^{x}e^{-t}\cdot f(t)\,dt - \int_{0}^{x}e^{-t}\cdot f^{(k+1)}(t)\,dt\right) = e^{x}\sum_{i=0}^{k}f^{(i)}(0) - \sum_{i=0}^{k}f^{(i)}(x).$$

Therefore, we see that

$$e^{x}\left(\int_{0}^{x}e^{-t}\cdot f(t)\,dt - \int_{0}^{x}e^{-t}\cdot f^{(k+1)}(t)\,dt\right) = e^{x}\sum_{i=0}^{k}f^{(i)}(0) - \sum_{i=0}^{k}f^{(i)}(x).$$

We make two observations:

• If we can freely choose *f*, ideally we want to choose *f* in such a way where taking high enough derivatives eventually land us at 0.

Therefore, we see that

$$e^{x}\left(\int_{0}^{x}e^{-t}\cdot f(t)\,dt - \int_{0}^{x}e^{-t}\cdot f^{(k+1)}(t)\,dt\right) = e^{x}\sum_{i=0}^{k}f^{(i)}(0) - \sum_{i=0}^{k}f^{(i)}(x).$$

We make two observations:

- If we can freely choose *f*, ideally we want to choose *f* in such a way where taking high enough derivatives eventually land us at 0.
- By letting $F(x) = \sum_{i=0}^{\infty} f^{(i)}(x)$, we can re-express the equality above.

Therefore, we see that

14/33

$$e^{x}\left(\int_{0}^{x}e^{-t}\cdot f(t)\,dt - \int_{0}^{x}e^{-t}\cdot f^{(k+1)}(t)\,dt\right) = e^{x}\sum_{i=0}^{k}f^{(i)}(0) - \sum_{i=0}^{k}f^{(i)}(x).$$

We make two observations:

- If we can freely choose *f*, ideally we want to choose *f* in such a way where taking high enough derivatives eventually land us at 0.
- By letting $F(x) = \sum_{i=0}^{\infty} f^{(i)}(x)$, we can re-express the equality above.

Therefore, we will define f to be some polynomial; the construction of f is yet to be determined but we just know that it is some polynomial.

Therefore, as $k \to \infty$, $\int_0^x e^{-t} \cdot f^{(k+1)}(t) dt \to 0$.

Therefore, as $k \to \infty$, $\int_0^x e^{-t} \cdot f^{(k+1)}(t) dt \to 0$. We let $F(x) = \sum_{i=0}^\infty f^{(i)}(x)$ such that we can write the previous expression exactly as

$$e^{x} \cdot \int_{0}^{x} e^{-t} \cdot f(t) dt = e^{x} \cdot F(0) - F(x).$$

Therefore, as
$$k \to \infty$$
, $\int_0^x e^{-t} \cdot f^{(k+1)}(t) dt \to 0$. We let $F(x) = \sum_{i=0}^\infty f^{(i)}(x)$ such that we can write the previous expression exactly as

$$e^{x} \cdot \int_{0} e^{-t} \cdot f(t) dt = e^{x} \cdot F(0) - F(x).$$

This finishes the first part of the proof; we now proceed with the proof.

As with most (if not all) transcendental proofs, we assume that *e* is *algebraic*. Therefore, there exist some polynomial A(t) with integer coefficients a_j (with $a_0, a_n \neq 0$) such that A(e) = 0; that is,

$$a_0 + a_1 e + a_2 e^2 + \dots + a_n e^n = 0.$$

As with most (if not all) transcendental proofs, we assume that *e* is *algebraic*. Therefore, there exist some polynomial A(t) with integer coefficients a_j (with $a_0, a_n \neq 0$) such that A(e) = 0; that is,

$$a_0 + a_1 e + a_2 e^2 + \dots + a_n e^n = 0.$$

Here, we can generate a series of equalities by setting x = k for each k = 0, 1, 2, ..., n; that is,

$$a_k e^k \int_0^k e^{-t} \cdot f(t) \, dt = a_k e^k \cdot F(0) - a_k \cdot F(k)$$

or

$$\sum_{k=0}^{n} a_{k} e^{k} \int_{0}^{k} e^{-t} \cdot f(t) dt = F(0) \sum_{k=0}^{n} a_{k} e^{k} - \sum_{k=0}^{n} a_{k} \cdot F(k).$$

This is equivalent to saying

$$\sum_{k=0}^{n} a_k e^k \int_0^k e^{-t} \cdot f(t) \, dt = -\sum_{k=0}^{n} a_k \cdot F(k)$$

since $\sum_{k=0}^{n} a_k e^k = 0$.

This is equivalent to saying

$$\sum_{k=0}^{n} a_k e^k \int_0^k e^{-t} \cdot f(t) dt = -\sum_{k=0}^{n} a_k \cdot F(k)$$

since $\sum_{k=0}^{n} a_k e^k = 0$.

We are now in a position to carefully choose f. How could we choose such a polynomial?

Let's explore the left side a little bit first! Our goal is to find some insight into how big the left side grows.

$$\sum_{k=0}^{n} a_k e^k \int_0^k e^{-t} \cdot f(t) \, dt = -\sum_{k=0}^{n} a_k \cdot F(k)$$

We see that

$$\left|\sum_{k=0}^n a_k e^k \int_0^k e^{-t} \cdot f(t) \, dt\right| \leq \sum_{k=0}^n |a_k e^k| \cdot \left|\int_0^k e^{-t} \cdot f(t) \, dt\right|.$$

$$\sum_{k=0}^{n} a_k e^k \int_0^k e^{-t} \cdot f(t) \, dt = -\sum_{k=0}^{n} a_k \cdot F(k)$$

We see that

$$\left|\sum_{k=0}^n a_k e^k \int_0^k e^{-t} \cdot f(t) \, dt\right| \leq \sum_{k=0}^n |a_k e^k| \cdot \left|\int_0^k e^{-t} \cdot f(t) \, dt\right|.$$

• How big does the integral grow? Since $k \le n$, then we have that

$$\left|\int_0^k e^{-t} \cdot f(t) \, dt\right| \le \left|\int_0^n e^{-t} \cdot f(t) \, dt\right| \le \int_0^n \left|e^{-t} \cdot f(t)\right| \, dt.$$

Let's try bounding $|e^{-t} \cdot f(t)|$ on the interval [0, n].

Let's try bounding $|e^{-t} \cdot f(t)|$ on the interval [0, n].

• Since e^{-t} is continuous on the closed interval [0, n], we know that e^{-t} attains a maximum on this interval. Let's call it *M*.

Let's try bounding $|e^{-t} \cdot f(t)|$ on the interval [0, n].

- Since e^{-t} is continuous on the closed interval [0, n], we know that e^{-t} attains a maximum on this interval. Let's call it *M*.
- Therefore, $|e^{-t} \cdot f(t)| \le M \cdot |f(t)|$.

Let's try bounding $|e^{-t} \cdot f(t)|$ on the interval [0, n].

- Since e^{-t} is continuous on the closed interval [0, n], we know that e^{-t} attains a maximum on this interval. Let's call it *M*.
- Therefore, $|e^{-t} \cdot f(t)| \le M \cdot |f(t)|$.
- In other words, we obtain the bound

$$\left|\int_0^k e^{-t} \cdot f(t) \, dt\right| \le \int_0^n M \cdot |f(t)| \, dt$$

Let's try bounding $|e^{-t} \cdot f(t)|$ on the interval [0, n].

- Since e^{-t} is continuous on the closed interval [0, n], we know that e^{-t} attains a maximum on this interval. Let's call it *M*.
- Therefore, $|e^{-t} \cdot f(t)| \le M \cdot |f(t)|$.
- In other words, we obtain the bound

$$\left|\int_0^k e^{-t} \cdot f(t) \, dt\right| \le \int_0^n M \cdot |f(t)| \, dt.$$

Thus, if we can force f to have a maximum on the interval [0, n], then we can achieve a nice bound on the overall integral. What about the right hand side?

$$\sum_{k=0}^{n} a_k e^k \int_0^k e^{-t} \cdot f(t) \, dt = -\sum_{k=0}^{n} a_k \cdot F(k)$$

Recall that $F(k) = \sum_{i=0}^{\infty} f^{(i)}(k)$. Can we make this sum arbitrarily large?

$$\sum_{k=0}^{n} a_k e^k \int_0^k e^{-t} \cdot f(t) \, dt = -\sum_{k=0}^{n} a_k \cdot F(k)$$

Recall that $F(k) = \sum_{i=0}^{\infty} f^{(i)}(k)$. Can we make this sum arbitrarily

large?

• Firstly, we see that *k* ranges from 0 to *n*. This tells us that we might want to consider a product of linear polynomials; that is, consider

$$g(x) = x(x-1)(x-2)\cdots(x-n)$$

since g(k) = 0 for each $k = 0, \ldots, n$.

$$\sum_{k=0}^{n} a_k e^k \int_0^k e^{-t} \cdot f(t) \, dt = -\sum_{k=0}^{n} a_k \cdot F(k)$$

Recall that $F(k) = \sum_{i=0}^{\infty} f^{(i)}(k)$. Can we make this sum arbitrarily

large?

• Firstly, we see that *k* ranges from 0 to *n*. This tells us that we might want to consider a product of linear polynomials; that is, consider

$$g(x) = x(x-1)(x-2)\cdots(x-n)$$

since g(k) = 0 for each $k = 0, \ldots, n$.

• Can we say anything about $f^{(i)}(k)$?

• If we differentiate $x(x-1)(x-2)\cdots(x-n)$ once, then g'(0) simply depends on one term since every other term must contain a factor of x.

- If we differentiate $x(x-1)(x-2)\cdots(x-n)$ once, then g'(0) simply depends on one term since every other term must contain a factor of x.
- If we differentiate $x^2(x-1)^2 \cdots (x-n)^2$ once, then $g'(0) = g'(1) = \cdots = g'(n)$.

- If we differentiate x(x − 1)(x − 2) · · · (x − n) once, then g'(0) simply depends on one term since every other term must contain a factor of x.
- If we differentiate $x^2(x-1)^2 \cdots (x-n)^2$ once, then $g'(0) = g'(1) = \cdots = g'(n)$.
- If we differentiate $x^3(x-1)^3 \cdots (x-n)^3$ once, then $g'(0) = g'(1) = \cdots = g'(n)$.

- If we differentiate x(x − 1)(x − 2) · · · (x − n) once, then g'(0) simply depends on one term since every other term must contain a factor of x.
- If we differentiate $x^2(x-1)^2 \cdots (x-n)^2$ once, then $g'(0) = g'(1) = \cdots = g'(n)$.
- If we differentiate $x^3(x-1)^3 \cdots (x-n)^3$ once, then $g'(0) = g'(1) = \cdots = g'(n)$.
 - However, if we differentiate $x^3(x-1)^3 \cdots (x-n)^3$ twice, then we also get $g''(0) = g''(1) = \cdots = g''(n)$.

- If we differentiate x(x − 1)(x − 2) · · · (x − n) once, then g'(0) simply depends on one term since every other term must contain a factor of x.
- If we differentiate $x^2(x-1)^2 \cdots (x-n)^2$ once, then $g'(0) = g'(1) = \cdots = g'(n)$.
- If we differentiate $x^3(x-1)^3 \cdots (x-n)^3$ once, then $g'(0) = g'(1) = \cdots = g'(n)$.
 - However, if we differentiate $x^3(x-1)^3 \cdots (x-n)^3$ twice, then we also get $g''(0) = g''(1) = \cdots = g''(n)$.

Perhaps, we'd want to set $f(x) = x^q(x-1)^q \dots (x-n)^q$ for some large enough q that we can freely choose...

• Since $x(x-1)\cdots(x-n)$ is continuous on the interval [0, n], then such a function attains a maximum – say *N*.

- Since $x(x-1)\cdots(x-n)$ is continuous on the interval [0, n], then such a function attains a maximum say *N*.
- Therefore, we can place a bound on the previous integral to get

$$\left|\int_0^k e^{-t} \cdot f(t) \, dt\right| \leq \int_0^n M \cdot N^q \, dt = M \cdot N^q n.$$

- Since $x(x-1)\cdots(x-n)$ is continuous on the interval [0, n], then such a function attains a maximum say *N*.
- Therefore, we can place a bound on the previous integral to get

$$\left|\int_0^k e^{-t} \cdot f(t) \, dt\right| \leq \int_0^n M \cdot N^q \, dt = M \cdot N^q n.$$

Hmm... ideally, we want this bound to be arbitrarily small. We can adjust this such that

$$f(x) = \frac{x^q (x-1)^q \cdots (x-n)^q}{q!}$$

since the factorial function grows much faster than the exponential functions. Thus, as $q \rightarrow \infty$, the bound approaches 0.

$$f(x) = \frac{x^q (x-1)^q \dots (x-n)^q}{q!}$$

Now, what about $f^{(i)}(k)$?

$$f(x) = \frac{x^q (x-1)^q \dots (x-n)^q}{q!}$$

Now, what about $f^{(i)}(k)$?

• For each
$$k, f^{(i)}(k) = 0$$
 if $i < q - 1$.

$$f(x) = \frac{x^q (x-1)^q \dots (x-n)^q}{q!}$$

Now, what about $f^{(i)}(k)$?

- For each $k, f^{(i)}(k) = 0$ if i < q 1.
- If i = q 1, we also see that $f^{(q-1)}(k) = 0$ for each k = 0, ..., n.

$$f(x) = \frac{x^q (x-1)^q \dots (x-n)^q}{q!}$$

Now, what about $f^{(i)}(k)$?

- For each $k, f^{(i)}(k) = 0$ if i < q 1.
- If i = q 1, we also see that $f^{(q-1)}(k) = 0$ for each k = 0, ..., n.

• This doesn't give us much to work with. But removing one of the powers of x gives us a nice characterisation: it turns out that

$$f^{(q-1)}(0) = \frac{(q-1)! \cdot (-1)^q (-2)^q \cdots (-n)^q}{q!}$$

$$f(x) = \frac{x^q (x-1)^q \dots (x-n)^q}{q!}$$

Now, what about $f^{(i)}(k)$?

- For each $k, f^{(i)}(k) = 0$ if i < q 1.
- If i = q 1, we also see that $f^{(q-1)}(k) = 0$ for each k = 0, ..., n.
 - This doesn't give us much to work with. But removing one of the powers of x gives us a nice characterisation: it turns out that

$$f^{(q-1)}(0) = \frac{(q-1)! \cdot (-1)^q (-2)^q \cdots (-n)^q}{q!}$$

To clean this up, we can refine the denominator to be (q - 1)! so that f^(q-1)(0) gives a nice expression.

$$f(x) = \frac{x^q (x-1)^q \dots (x-n)^q}{q!}$$

Now, what about $f^{(i)}(k)$?

- For each $k, f^{(i)}(k) = 0$ if i < q 1.
- If i = q 1, we also see that $f^{(q-1)}(k) = 0$ for each k = 0, ..., n.

 This doesn't give us much to work with. But removing one of the powers of x gives us a nice characterisation: it turns out that

$$f^{(q-1)}(0) = \frac{(q-1)! \cdot (-1)^q (-2)^q \cdots (-n)^q}{q!}$$

- To clean this up, we can refine the denominator to be (q 1)! so that f^(q-1)(0) gives a nice expression.
- Therefore, refining *f* gives us

$$f(x) = \frac{x^{q-1}(x-1)^q \cdots (x-n)^q}{(q-1)!}.$$

24/33

•
$$f^{(q-1)}(0) = (-1)^q (-2)^q \dots (-n)^q$$
.

We want to now focus on making some ground with F(k) using our refined formulation for f(k). We saw that

• $f^{(q-1)}(0) = (-1)^q (-2)^q \dots (-n)^q$.

•
$$f^{(i)}(k) = 0$$
 for all $i < q - 1$.

- $f^{(q-1)}(0) = (-1)^q (-2)^q \dots (-n)^q$.
- $f^{(i)}(k) = 0$ for all i < q 1.
- What about for all other values of *i* and *k*?

- $f^{(q-1)}(0) = (-1)^q (-2)^q \dots (-n)^q$.
- $f^{(i)}(k) = 0$ for all i < q 1.
- What about for all other values of *i* and *k*?
 - If $k \neq 0$, then clearly $f^{(q-1)}(k) = 0$.

- $f^{(q-1)}(0) = (-1)^q (-2)^q \dots (-n)^q$.
- $f^{(i)}(k) = 0$ for all i < q 1.
- What about for all other values of *i* and *k*?
 - If $k \neq 0$, then clearly $f^{(q-1)}(k) = 0$.
 - If i ≥ q and k ≠ 0, then the term that remains must have had (x - k)^q differentiated q times, leaving us with a factor of q! in the numerator.

We want to now focus on making some ground with F(k) using our refined formulation for f(k). We saw that

- $f^{(q-1)}(0) = (-1)^q (-2)^q \dots (-n)^q$.
- $f^{(i)}(k) = 0$ for all i < q 1.
- What about for all other values of *i* and *k*?
 - If $k \neq 0$, then clearly $f^{(q-1)}(k) = 0$.
 - If i ≥ q and k ≠ 0, then the term that remains must have had (x - k)^q differentiated q times, leaving us with a factor of q! in the numerator. But this implies that

$$f^{(q)}(k) = \frac{q! \cdot X}{(q-1)!},$$

for some integer X. In other words, $f^{(i)}(k)$ is an integer multiple of q.

Therefore, what we have in F(k) are some integral terms that is divisible by q and $f^{(q-1)}(0)$.

Therefore, what we have in F(k) are some integral terms that is divisible by q and $f^{(q-1)}(0)$.

• This tells us that F(k) is an integer and so, $a_k \cdot F(k)$ is also an integer.

Therefore, what we have in F(k) are some integral terms that is divisible by q and $f^{(q-1)}(0)$.

• This tells us that F(k) is an integer and so, $a_k \cdot F(k)$ is also an integer. If we can now show that the sum is necessarily non-zero for large enough q, then we are done (why?).

Therefore, what we have in F(k) are some integral terms that is divisible by q and $f^{(q-1)}(0)$.

- This tells us that F(k) is an integer and so, a_k · F(k) is also an integer. If we can now show that the sum is necessarily non-zero for large enough q, then we are done (why?).
- Note that

$$\sum_{k=0}^{n} a_k \cdot F(k)$$

is composed of terms that are divisible by q and $f^{(q-1)}(0)$. If we can enforce $f^{(q-1)}(0)$ to not be divisible by q, then we are effectively there!

Therefore, what we have in F(k) are some integral terms that is divisible by q and $f^{(q-1)}(0)$.

- This tells us that F(k) is an integer and so, a_k · F(k) is also an integer. If we can now show that the sum is necessarily non-zero for large enough q, then we are done (why?).
- Note that

$$\sum_{k=0}^{n} a_k \cdot F(k)$$

is composed of terms that are divisible by q and $f^{(q-1)}(0)$. If we can enforce $f^{(q-1)}(0)$ to not be divisible by q, then we are effectively there!

• Recall that $f^{(q-1)}(0) = (-1)^q \cdot (n!)^q$. If q > n and prime, then q cannot appear in the prime factorisation of n! which implies that it cannot appear in the factorisation of $(n!)^q$. Thus, we let q > n be prime.

How do we ensure that $a_0 \cdot F(k)$ is not a multiple of q?

How do we ensure that $a_0 \cdot F(k)$ is not a multiple of *q*?

26/33

• We first showed that F(k) could not be a multiple of q.

How do we ensure that $a_0 \cdot F(k)$ is not a multiple of *q*?

- We first showed that F(k) could not be a multiple of q.
- It is still possible that a₀ is a multiple of q. The easy fix is to enforce q > |a₀|.

How do we ensure that $a_0 \cdot F(k)$ is not a multiple of q?

- We first showed that F(k) could not be a multiple of q.
- It is still possible that a₀ is a multiple of q. The easy fix is to enforce q > |a₀|.

Putting these together, we see that $f^{(q-1)}(0)$ is never a multiple of q; this implies that the sum $\sum_{k=0}^{n} a_k \cdot F(k)$ is non-zero for large enough q.

The contradiction!

• On the one hand, we said that

$$\left|\sum_{k=0}^{n} a_k e^k \int_0^k e^{-t} \cdot f(t) \, dt\right| \to 0$$

as
$$q \to \infty$$
.

The contradiction!

• On the one hand, we said that

$$\left|\sum_{k=0}^{n} a_k e^k \int_0^k e^{-t} \cdot f(t) \, dt\right| \to 0$$

as $q \to \infty$.

• On the other hand, we also said that

$$\sum_{k=0}^{n} a_k F(k)$$

is a non-zero integer as $q \rightarrow \infty$.

The contradiction!

On the one hand, we said that

$$\left|\sum_{k=0}^{n} a_k e^k \int_0^k e^{-t} \cdot f(t) \, dt\right| \to 0$$

as $q \to \infty$.

• On the other hand, we also said that

$$\sum_{k=0}^{n} a_k F(k)$$

is a non-zero integer as $q \rightarrow \infty$.

This is the contradiction! Therefore, our assumption (that *e* is algebraic) must have been incorrect; thus, *e* is transcendental.

Putting everything together...

That was a lot to work through, so let's summarise everything here!

Suppose that *e* is *algebraic*; then there exist a polynomial with integer coefficients *a_i* (with *a*₀, *a_n* ≠ 0) such that

$$a_0+a_1e+\cdots+a_ne^n=0.$$

Putting everything together...

That was a lot to work through, so let's summarise everything here!

Suppose that *e* is *algebraic*; then there exist a polynomial with integer coefficients *a_i* (with *a*₀, *a_n* ≠ 0) such that

$$a_0 + a_1 e + \dots + a_n e^n = 0.$$

• Let p > n, a_0 be prime and consider the function

$$f(x) = \frac{x^{p-1}(x-1)^p (x-2)^p \cdots (x-n)^p}{(p-1)!}$$

Putting everything together...

That was a lot to work through, so let's summarise everything here!

Suppose that *e* is *algebraic*; then there exist a polynomial with integer coefficients *a_i* (with *a*₀, *a_n* ≠ 0) such that

$$a_0 + a_1 e + \dots + a_n e^n = 0.$$

• Let p > n, a_0 be prime and consider the function

$$f(x) = \frac{x^{p-1}(x-1)^p(x-2)^p \cdots (x-n)^p}{(p-1)!}$$

• Letting
$$F(x) = \sum_{i=0}^{n} f^{(i)}(x)$$
, we can see that

$$\sum_{k=0}^{n} a_k e^k \int_0^k e^{-t} \cdot f(t) dt = -\sum_{k=0}^{n} a_k \cdot F(k).$$

29/33

• The contradiction comes from showing that the left side converges to 0 for large enough *p*, while the right side is a non-zero integer for large enough *p*.

30/33

Lindemann-Weierstrass Theorem

If $\{\alpha_1, \alpha_2, ..., \alpha_n\}$ is a collection of *algebraic numbers* that is linearly independent over \mathbb{Q} , then the set $\{e^{\alpha_1}, e^{\alpha_2}, ..., e^{\alpha_n}\}$ forms a set such that no element in the set is a root of any non-trivial polynomial equations with coefficients in \mathbb{Q} .

If $\{\alpha_1, \alpha_2, ..., \alpha_n\}$ is a collection of *algebraic numbers* that is linearly independent over \mathbb{Q} , then the set $\{e^{\alpha_1}, e^{\alpha_2}, ..., e^{\alpha_n}\}$ forms a set such that no element in the set is a root of any non-trivial polynomial equations with coefficients in \mathbb{Q} .

• But note that one can always transform a polynomial with rational coefficients to a polynomial with integer coefficients.

If $\{\alpha_1, \alpha_2, ..., \alpha_n\}$ is a collection of *algebraic numbers* that is linearly independent over \mathbb{Q} , then the set $\{e^{\alpha_1}, e^{\alpha_2}, ..., e^{\alpha_n}\}$ forms a set such that no element in the set is a root of any non-trivial polynomial equations with coefficients in \mathbb{Q} .

- But note that one can always transform a polynomial with rational coefficients to a polynomial with integer coefficients.
- Thus, the set {e^{α1},..., e^{αn}} also forms a set such that no element in the set is a root of any non-trivial polynomial equations with coefficients in Z.

If $\{\alpha_1, \alpha_2, ..., \alpha_n\}$ is a collection of *algebraic numbers* that is linearly independent over \mathbb{Q} , then the set $\{e^{\alpha_1}, e^{\alpha_2}, ..., e^{\alpha_n}\}$ forms a set such that no element in the set is a root of any non-trivial polynomial equations with coefficients in \mathbb{Q} .

- But note that one can always transform a polynomial with rational coefficients to a polynomial with integer coefficients.
- Thus, the set {e^{α1},..., e^{αn}} also forms a set such that no element in the set is a root of any non-trivial polynomial equations with coefficients in Z.
 - But this implies that each e^{α_i} is *transcendental*.

Proving that e and π are transcendental

• Proving that e and π are transcendental is a direct consequence of the theorem.

Proving that e and π are transcendental

- Proving that e and π are transcendental is a direct consequence of the theorem.
 - The set {1} is a linearly independent set of a single algebraic number. Therefore, $e^1 = e$ is transcendental.

Proving that e and π are transcendental

- Proving that e and π are transcendental is a direct consequence of the theorem.
 - The set {1} is a linearly independent set of a single algebraic number. Therefore, $e^1 = e$ is transcendental.
 - If π were algebraic, then πi is also algebraic. But this implies that the set $\{1, \pi i\}$ forms a linearly independent set of algebraic numbers, which implies that the elements of $\{e^1, e^{\pi i}\}$ are themselves transcendental. But $e^{\pi i} + 1 = 0$. Contradiction!

Concluding Remarks

• In this talk, we work exclusively with transcendence over \mathbb{Q} ; we can extend this to other fields too!

Concluding Remarks

- In this talk, we work exclusively with transcendence over Q; we can extend this to other fields too!
 - If we define polynomials whose coefficients come from \mathbb{R} , then *e* and π are no longer transcendental since x e and $x \pi$ are polynomials in this polynomial ring.

Concluding Remarks

- In this talk, we work exclusively with transcendence over Q; we can extend this to other fields too!
 - If we define polynomials whose coefficients come from \mathbb{R} , then *e* and π are no longer transcendental since x e and $x \pi$ are polynomials in this polynomial ring.
- Proving transcendence is quite hard! We know that e and π are separately transcendental but we don't know whether $e + \pi$ is transcendental.