Transcendence of e

1/33

Gerald Huang

UNSW Mathematics Society

June 13, 2023

[Proof of transcendence](#page-18-0) [Part I](#page-25-0) [Part II](#page-37-0)

2/33

[Lindemann-Weierstrass Theorem](#page-86-0)

• Algebraic: can be generated from *algebraic* equations.

Algebraic: can be generated from *algebraic* equations.

An algebraic number is a number that is the root of some polynomial with integer coefficients; that is, α is algebraic if there exist a polynomial $f \in \mathbb{Z}[x]$ such that

$$
a_0 + a_1 \alpha + \cdots + a_n \alpha^n = 0
$$

where $\alpha_i \in \mathbb{Z}$ for each $i = 0, \ldots, n$ and $a_n \neq 0$.

Algebraic: can be generated from *algebraic* equations.

An algebraic number is a number that is the root of some polynomial with integer coefficients; that is, α is algebraic if there exist a polynomial $f \in \mathbb{Z}[x]$ such that

$$
a_0 + a_1 \alpha + \cdots + a_n \alpha^n = 0
$$

where $\alpha_i \in \mathbb{Z}$ for each $i = 0, \ldots, n$ and $a_n \neq 0$.

• A number is said to be *transcendental* if it is not algebraic.

• Any rational number $k = p/q$ is algebraic because it is the root of the equation

 $f(x) = qx - p$.

• Any rational number $k = p/q$ is algebraic because it is the root of the equation

 $f(x) = qx - p$.

• √ 2 is algebraic because it is a root of the equation

 $f(x) = x^2 - 2.$

• Any rational number $k = p/q$ is algebraic because it is the root of the equation

 $f(x) = qx - p$.

• √ 2 is algebraic because it is a root of the equation

 $f(x) = x^2 - 2.$

• *i* is algebraic because it is a root of the equation

 $f(x) = x^2 + 1.$

• Any rational number $k = p/q$ is algebraic because it is the root of the equation

 $f(x) = qx - p$.

• √ 2 is algebraic because it is a root of the equation

 $f(x) = x^2 - 2.$

• *i* is algebraic because it is a root of the equation

 $f(x) = x^2 + 1.$

• Let ζ_n be a primitive *n*-th root of unity. Then ζ_n is algebraic because it is a root of the equation

 $f(x) = x^{n} - 1.$

Do transcendental numbers even exist in the first place?

Do transcendental numbers even exist in the first place? (Yes!)

The algebraic numbers form a countable set.

Do transcendental numbers even exist in the first place? (Yes!)

The algebraic numbers form a *countable* set.

Proof.

Given an integer N and integer coefficients a_0, a_1, \ldots, a_N , we see that the polynomial

$$
a_N x^N + \cdots + a_1 x + a_0 \tag{1}
$$

has at most N many solutions (from the Fundamental Theorem of Algebra).

Do transcendental numbers even exist in the first place? (Yes!)

The algebraic numbers form a *countable* set.

Proof.

Given an integer N and integer coefficients a_0, a_1, \ldots, a_N , we see that the polynomial

$$
a_N x^N + \cdots + a_1 x + a_0 \tag{1}
$$

has at most N many solutions (from the Fundamental Theorem of Algebra). Denote $A_{N,a_0,...,a_N}$ to be the set of roots of (1), so that $|A_{N,a_0,...,a_N}| \leq N$, which is clearly countable.

Proof continued…

Let B_N be the set of roots of polynomials of degree N.

Proof continued…

Let B_N be the set of roots of polynomials of degree N. Therefore, it is easy to see that

$$
B_N = \bigcup_{(a_N, a_{N-1}, \ldots, a_0) \in \mathbb{Z} \setminus \{0\} \times \mathbb{Z} \times \cdots \times \mathbb{Z}} A_{N, a_0, \ldots, a_N},
$$

which is a countable union of countable sets.

Proof continued…

Let B_N be the set of roots of polynomials of degree N. Therefore, it is easy to see that

$$
B_N = \bigcup_{(a_N, a_{N-1}, \ldots, a_0) \in \mathbb{Z} \setminus \{0\} \times \mathbb{Z} \times \cdots \times \mathbb{Z}} A_{N, a_0, \ldots, a_N},
$$

which is a countable union of countable sets. Therefore, B_N is also countable.

Finally, the set of algebraic numbers is exactly

$$
\mathbb{A}=\bigcup_{n\in\mathbb{N}}B_n,
$$

which is, again, a countable union of countable sets. So, A is countable.

• Since $\mathbb R$ is uncountable, this implies that the set of transcendental numbers must be uncountable.

In other words, if you were to draw a real number out of a hat, it is more likely to be transcendental than algebraic!

9/33

[Proof of transcendence](#page-18-0)

Proof outline

We outline the proof with two main steps that we will explore in greater detail.

1. Show that

10/33

$$
e^{x} \cdot \int_{0}^{x} e^{-t} \cdot f(t) dt = e^{x} \cdot f(0) - f(x) + e^{x} \int_{0}^{x} e^{-t} \cdot f'(t) dt
$$

and consider a suitable function for $f(t)$ to define another series of functions $F(x)$.

2. By choosing a suitable function for $f(t)$, arrive at a contradiction that shows that e must indeed be transcendental.

 $\boxed{11/33}$

 $e^x \cdot \int^x$ $\bf{0}$ e^{-t} · $f(t)$ dt = e^{x} · $f(0) - f(x) + e^{x}$ \int_{0}^{x} 0 $e^{-t} \cdot f'(t) dt$

$$
e^{x} \cdot \int_{0}^{x} e^{-t} \cdot f(t) dt = e^{x} \cdot f(0) - f(x) + e^{x} \int_{0}^{x} e^{-t} \cdot f'(t) dt
$$

We begin with integration by parts on the integral.

$$
e^{x} \cdot \int_{0}^{x} e^{-t} \cdot f(t) dt = e^{x} \cdot f(0) - f(x) + e^{x} \int_{0}^{x} e^{-t} \cdot f'(t) dt
$$

We begin with integration by parts on the integral.

$$
\int_0^x e^{-t} \cdot f(t) dt = \left(\int e^{-t} \right) \cdot f(t) \Big|_0^x + \int_0^x e^{-t} \cdot f'(t) dt
$$

= $f(0) - e^{-x} \cdot f(x) + \int_0^x e^{-t} \cdot f'(t) dt$.

$$
e^{x} \cdot \int_{0}^{x} e^{-t} \cdot f(t) dt = e^{x} \cdot f(0) - f(x) + e^{x} \int_{0}^{x} e^{-t} \cdot f'(t) dt
$$

We begin with integration by parts on the integral.

$$
\int_0^x e^{-t} \cdot f(t) dt = \left(\int e^{-t} \right) \cdot f(t) \Big|_0^x + \int_0^x e^{-t} \cdot f'(t) dt
$$

= $f(0) - e^{-x} \cdot f(x) + \int_0^x e^{-t} \cdot f'(t) dt$.

Therefore,

11/33

$$
e^{x} \cdot \int_{0}^{x} e^{-t} \cdot f(t) dt = e^{x} \cdot f(0) - f(x) + e^{x} \int_{0}^{x} e^{-t} \cdot f'(t) dt,
$$

as required.

$$
e^{x} \cdot \int_{0}^{x} e^{-t} \cdot f(t) dt = e^{x} \cdot f(0) - f(x) + e^{x} \int_{0}^{x} e^{-t} \cdot f'(t) dt
$$

We can see that by replacing $f(t)$ on the left hand side with $f'(t)$, we indeed obtain the middle expression. In other words, we have that

$$
e^{x}\left(\int_{0}^{x}e^{-t}\cdot f(t) dt - \int_{0}^{x}e^{-t}\cdot f'(t) dt\right) = e^{x}\cdot f(0) - f(x).
$$

$$
e^{x}\left(\int_{0}^{x}e^{-t}\cdot f(t) dt - \int_{0}^{x}e^{-t}\cdot f'(t) dt\right) = e^{x}\cdot f(0) - f(x).
$$

Let's explore this relation a little bit. By replacing $f^{(i)}$ with $f^{(i+1)}$, we can see that

$$
e^{x} \left(\int_{0}^{x} e^{-t} \cdot f(t) dt - \int_{0}^{x} e^{-t} \cdot f'(t) dt \right) = e^{x} \cdot f(0) - f(x),
$$

$$
e^{x} \left(\int_{0}^{x} e^{-t} \cdot f'(t) dt - \int_{0}^{x} e^{-t} \cdot f''(t) dt \right) = e^{x} \cdot f'(0) - f'(x),
$$

. . .

$$
e^{x}\left(\int_{0}^{x}e^{-t}\cdot f^{(k)}(t) dt - \int_{0}^{x}e^{-t}\cdot f^{(k+1)}(t) dt\right) = e^{x}\cdot f^{(k)}(0) - f^{(k)}(x).
$$

Therefore, we see that

$$
e^{x}\left(\int_{0}^{x}e^{-t}\cdot f(t) dt - \int_{0}^{x}e^{-t}\cdot f^{(k+1)}(t) dt\right) = e^{x}\sum_{i=0}^{k} f^{(i)}(0) - \sum_{i=0}^{k} f^{(i)}(x).
$$

Therefore, we see that

$$
e^{x}\left(\int_{0}^{x}e^{-t}\cdot f(t) dt - \int_{0}^{x}e^{-t}\cdot f^{(k+1)}(t) dt\right) = e^{x}\sum_{i=0}^{k} f^{(i)}(0) - \sum_{i=0}^{k} f^{(i)}(x).
$$

We make two observations:

• If we can freely choose f, ideally we want to choose f in such a way where taking high enough derivatives eventually land us at 0.

Therefore, we see that

$$
e^{x}\left(\int_{0}^{x}e^{-t}\cdot f(t) dt - \int_{0}^{x}e^{-t}\cdot f^{(k+1)}(t) dt\right) = e^{x}\sum_{i=0}^{k} f^{(i)}(0) - \sum_{i=0}^{k} f^{(i)}(x).
$$

We make two observations:

- If we can freely choose f, ideally we want to choose f in such a way where taking high enough derivatives eventually land us at 0.
- By letting $F(x) = \sum_{i=0}^{\infty} f^{(i)}(x)$, we can re-express the equality above.

Therefore, we see that

14/33

$$
e^{x}\left(\int_{0}^{x}e^{-t}\cdot f(t) dt - \int_{0}^{x}e^{-t}\cdot f^{(k+1)}(t) dt\right) = e^{x}\sum_{i=0}^{k} f^{(i)}(0) - \sum_{i=0}^{k} f^{(i)}(x).
$$

We make two observations:

- If we can freely choose f, ideally we want to choose f in such a way where taking high enough derivatives eventually land us at 0.
- By letting $F(x) = \sum_{i=0}^{\infty} f^{(i)}(x)$, we can re-express the equality above.

Therefore, we will define f to be some polynomial; the construction of f is yet to be determined but we just know that it is some polynomial.

Therefore, as $k \to \infty$, $\int_0^x e^{-t} \cdot f^{(k+1)}(t) dt \to 0$.

Therefore, as $k \to \infty$, $\int_0^x e^{-t} \cdot f^{(k+1)}(t) dt \to 0$. We let $F(x) = \sum_{i=0}^{\infty} f^{(i)}(x)$ such that we can write the previous expression exactly as

$$
e^x \cdot \int_0^x e^{-t} \cdot f(t) dt = e^x \cdot F(0) - F(x).
$$

Therefore, as $k \to \infty$, $\int_0^x e^{-t} \cdot f^{(k+1)}(t) dt \to 0$. We let $F(x) = \sum_{i=0}^{\infty} f^{(i)}(x)$ such that we can write the previous expression exactly as $e^x \cdot \int^x$ $e^{-t} \cdot f(t) dt = e^{x} \cdot F(0) - F(x).$

This finishes the first part of the proof; we now proceed with the proof.

0

As with most (if not all) transcendental proofs, we assume that e is algebraic. Therefore, there exist some polynomial $A(t)$ with integer coefficients a_i (with a_0 , $a_n \neq 0$) such that $A(e) = 0$; that is,

$$
a_0 + a_1 e + a_2 e^2 + \cdots + a_n e^n = 0.
$$
As with most (if not all) transcendental proofs, we assume that e is *algebraic.* Therefore, there exist some polynomial $A(t)$ with integer coefficients a_i (with a_0 , $a_n \neq 0$) such that $A(e) = 0$; that is,

$$
a_0 + a_1 e + a_2 e^2 + \cdots + a_n e^n = 0.
$$

Here, we can generate a series of equalities by setting $x = k$ for each $k = 0, 1, 2, \ldots, n$; that is,

$$
a_k e^k \int_0^k e^{-t} \cdot f(t) dt = a_k e^k \cdot F(0) - a_k \cdot F(k)
$$

or

$$
\sum_{k=0}^{n} a_k e^k \int_0^k e^{-t} \cdot f(t) dt = F(0) \sum_{k=0}^{n} a_k e^k - \sum_{k=0}^{n} a_k \cdot F(k).
$$

This is equivalent to saying

$$
\sum_{k=0}^{n} a_k e^k \int_0^k e^{-t} \cdot f(t) dt = - \sum_{k=0}^{n} a_k \cdot F(k)
$$

since $\sum_{k=0}^{n} a_k e^k = 0$.

This is equivalent to saying

$$
\sum_{k=0}^{n} a_k e^k \int_0^k e^{-t} \cdot f(t) dt = - \sum_{k=0}^{n} a_k \cdot F(k)
$$

since $\sum_{k=0}^{n} a_k e^k = 0$.

17/33

We are now in a position to carefully choose f . How could we choose such a polynomial?

Let's explore the left side a little bit first! Our goal is to find some insight into how big the left side grows.

$$
\sum_{k=0}^{n} a_k e^k \int_0^k e^{-t} \cdot f(t) dt = - \sum_{k=0}^{n} a_k \cdot F(k)
$$

We see that

$$
\left|\sum_{k=0}^n a_k e^k \int_0^k e^{-t} \cdot f(t) dt \right| \leq \sum_{k=0}^n |a_k e^k| \cdot \left| \int_0^k e^{-t} \cdot f(t) dt \right|.
$$

$$
\sum_{k=0}^{n} a_k e^k \int_0^k e^{-t} \cdot f(t) dt = - \sum_{k=0}^{n} a_k \cdot F(k)
$$

We see that

$$
\left|\sum_{k=0}^n a_k e^k \int_0^k e^{-t} \cdot f(t) dt \right| \leq \sum_{k=0}^n |a_k e^k| \cdot \left| \int_0^k e^{-t} \cdot f(t) dt \right|.
$$

• How big does the integral grow? Since $k \leq n$, then we have that

$$
\left|\int_0^k e^{-t} \cdot f(t) dt \right| \le \left|\int_0^n e^{-t} \cdot f(t) dt \right| \le \int_0^n \left| e^{-t} \cdot f(t) \right| dt.
$$

Let's try bounding $|e^{-t} \cdot f(t)|$ on the interval $[0, n]$.

Let's try bounding $|e^{-t} \cdot f(t)|$ on the interval $[0, n]$.

• Since e^{-t} is continuous on the closed interval $[0, n]$, we know that e^{-t} attains a maximum on this interval. Let's call it M.

Let's try bounding $|e^{-t} \cdot f(t)|$ on the interval $[0, n]$.

- Since e^{-t} is continuous on the closed interval $[0, n]$, we know that e^{-t} attains a maximum on this interval. Let's call it M.
- Therefore, $|e^{-t} \cdot f(t)| \leq M \cdot |f(t)|$.

Let's try bounding $|e^{-t} \cdot f(t)|$ on the interval $[0, n]$.

- Since e^{-t} is continuous on the closed interval $[0, n]$, we know that e^{-t} attains a maximum on this interval. Let's call it M.
- Therefore, $|e^{-t} \cdot f(t)| \leq M \cdot |f(t)|$.

19/33

• In other words, we obtain the bound

$$
\left| \int_0^k e^{-t} \cdot f(t) \, dt \right| \leq \int_0^n M \cdot |f(t)| \, dt.
$$

Let's try bounding $|e^{-t} \cdot f(t)|$ on the interval $[0, n]$.

- Since e^{-t} is continuous on the closed interval $[0, n]$, we know that e^{-t} attains a maximum on this interval. Let's call it M.
- Therefore, $|e^{-t} \cdot f(t)| \leq M \cdot |f(t)|$.
- In other words, we obtain the bound

$$
\left| \int_0^k e^{-t} \cdot f(t) \, dt \right| \leq \int_0^n M \cdot |f(t)| \, dt.
$$

Thus, if we can force f to have a maximum on the interval $[0, n]$, then we can achieve a nice bound on the overall integral. What about the right hand side?

$$
\sum_{k=0}^{n} a_k e^k \int_0^k e^{-t} \cdot f(t) dt = - \sum_{k=0}^{n} a_k \cdot F(k)
$$

Recall that $F(k) = \sum_{k=1}^{\infty}$ $i=0$ $f^{(i)}(k)$. Can we make this sum arbitrarily large?

$$
\sum_{k=0}^{n} a_k e^k \int_0^k e^{-t} \cdot f(t) dt = - \sum_{k=0}^{n} a_k \cdot F(k)
$$

Recall that $F(k) = \sum_{k=1}^{\infty}$ $i=0$ $f^{(i)}(k)$. Can we make this sum arbitrarily

large?

• Firstly, we see that k ranges from 0 to n. This tells us that we might want to consider a product of linear polynomials; that is, consider

$$
g(x) = x(x-1)(x-2)\cdots(x-n)
$$

since $g(k) = 0$ for each $k = 0, \ldots, n$.

$$
\sum_{k=0}^{n} a_k e^k \int_0^k e^{-t} \cdot f(t) dt = - \sum_{k=0}^{n} a_k \cdot F(k)
$$

Recall that $F(k) = \sum_{i=0}^{\infty} f^{(i)}(k)$. Can we make this sum arbitrarily $i=0$

large?

• Firstly, we see that k ranges from 0 to n. This tells us that we might want to consider a product of linear polynomials; that is, consider

$$
g(x) = x(x-1)(x-2)\cdots(x-n)
$$

since $g(k) = 0$ for each $k = 0, \ldots, n$.

• Can we say anything about $f^{(i)}(k)$?

21/33

• If we differentiate $x(x - 1)(x - 2) \cdots (x - n)$ once, then $g'(0)$ simply depends on one term since every other term must contain a factor of x.

- If we differentiate $x(x 1)(x 2) \cdots (x n)$ once, then $g'(0)$ simply depends on one term since every other term must contain a factor of x.
- If we differentiate $x^2(x-1)^2 \cdots (x-n)^2$ once, then $g'(0) = g'(1) = \cdots = g'(n).$

- If we differentiate $x(x 1)(x 2) \cdots (x n)$ once, then $g'(0)$ simply depends on one term since every other term must contain a factor of x.
- If we differentiate $x^2(x-1)^2 \cdots (x-n)^2$ once, then $g'(0) = g'(1) = \cdots = g'(n).$

21/33

• If we differentiate $x^3(x-1)^3 \cdots (x-n)^3$ once, then $g'(0) = g'(1) = \cdots = g'(n).$

- If we differentiate $x(x 1)(x 2) \cdots (x n)$ once, then $g'(0)$ simply depends on one term since every other term must contain a factor of x.
- If we differentiate $x^2(x-1)^2 \cdots (x-n)^2$ once, then $g'(0) = g'(1) = \cdots = g'(n).$
- If we differentiate $x^3(x-1)^3 \cdots (x-n)^3$ once, then $g'(0) = g'(1) = \cdots = g'(n).$
	- However, if we differentiate $x^3(x-1)^3 \cdots (x-n)^3$ twice, then we also get $g''(0) = g''(1) = \cdots = g''(n)$.

- If we differentiate $x(x 1)(x 2) \cdots (x n)$ once, then $g'(0)$ simply depends on one term since every other term must contain a factor of x.
- If we differentiate $x^2(x-1)^2 \cdots (x-n)^2$ once, then $g'(0) = g'(1) = \cdots = g'(n).$
- If we differentiate $x^3(x-1)^3 \cdots (x-n)^3$ once, then $g'(0) = g'(1) = \cdots = g'(n).$
	- However, if we differentiate $x^3(x-1)^3 \cdots (x-n)^3$ twice, then we also get $g''(0) = g''(1) = \cdots = g''(n)$.

Perhaps, we'd want to set $f(x) = x^q(x - 1)^q \dots (x - n)^q$ for some large enough q that we can freely choose...

22/33

• Since $x(x - 1) \cdots (x - n)$ is continuous on the interval $[0, n]$, then such a function attains a maximum – say N .

- Since $x(x 1) \cdots (x n)$ is continuous on the interval $[0, n]$, then such a function attains a maximum – say N .
- Therefore, we can place a bound on the previous integral to get

$$
\left| \int_0^k e^{-t} \cdot f(t) dt \right| \leq \int_0^n M \cdot N^q dt = M \cdot N^q n.
$$

- Since $x(x 1) \cdots (x n)$ is continuous on the interval $[0, n]$, then such a function attains a maximum – say N .
- Therefore, we can place a bound on the previous integral to get

$$
\left|\int_0^k e^{-t} \cdot f(t) dt \right| \leq \int_0^n M \cdot N^q dt = M \cdot N^q n.
$$

Hmm… ideally, we want this bound to be arbitrarily small. We can adjust this such that

$$
f(x) = \frac{x^q(x-1)^q \cdots (x-n)^q}{q!}
$$

since the factorial function grows much faster than the exponential functions. Thus, as $q \to \infty$, the bound approaches 0.

$$
f(x) = \frac{x^q(x-1)^q \dots (x-n)^q}{q!}
$$

Now, what about $f^{(i)}(k)$?

$$
f(x) = \frac{x^q(x-1)^q \dots (x-n)^q}{q!}
$$

• For each
$$
k, f^{(i)}(k) = 0
$$
 if $i < q - 1$.

$$
f(x) = \frac{x^q(x-1)^q \dots (x-n)^q}{q!}
$$

- For each $k, f^{(i)}(k) = 0$ if $i < q 1$.
- If $i = q 1$, we also see that $f^{(q-1)}(k) = 0$ for each $k = 0, ..., n$.

$$
f(x) = \frac{x^q(x-1)^q \dots (x-n)^q}{q!}
$$

- For each $k, f^{(i)}(k) = 0$ if $i < q 1$.
- If $i = q 1$, we also see that $f^{(q-1)}(k) = 0$ for each $k = 0, ..., n$.
	- This doesn't give us much to work with. But removing one of the powers of x gives us a nice characterisation: it turns out that

$$
f^{(q-1)}(0) = \frac{(q-1)! \cdot (-1)^q (-2)^q \cdots (-n)^q}{q!}.
$$

$$
f(x) = \frac{x^q(x-1)^q \dots (x-n)^q}{q!}
$$

Now, what about $f^{(i)}(k)$?

- For each $k, f^{(i)}(k) = 0$ if $i < q 1$.
- If $i = q 1$, we also see that $f^{(q-1)}(k) = 0$ for each $k = 0, ..., n$.
	- This doesn't give us much to work with. But removing one of the powers of x gives us a nice characterisation: it turns out that

$$
f^{(q-1)}(0) = \frac{(q-1)! \cdot (-1)^q (-2)^q \cdots (-n)^q}{q!}.
$$

• To clean this up, we can refine the denominator to be $(q - 1)!$ so that $f^{(q-1)}(0)$ gives a nice expression.

$$
f(x) = \frac{x^q(x-1)^q \dots (x-n)^q}{q!}
$$

- For each $k, f^{(i)}(k) = 0$ if $i < q 1$.
- If $i = q 1$, we also see that $f^{(q-1)}(k) = 0$ for each $k = 0, ..., n$.
	- This doesn't give us much to work with. But removing one of the powers of x gives us a nice characterisation: it turns out that

$$
f^{(q-1)}(0) = \frac{(q-1)! \cdot (-1)^q (-2)^q \cdots (-n)^q}{q!}.
$$

- To clean this up, we can refine the denominator to be $(q 1)!$ so that $f^{(q-1)}(0)$ gives a nice expression.
- Therefore, refining f gives us

$$
f(x) = \frac{x^{q-1}(x-1)^q \cdots (x-n)^q}{(q-1)!}.
$$

24/33

•
$$
f^{(q-1)}(0) = (-1)^q(-2)^q \dots (-n)^q
$$
.

We want to now focus on making some ground with $F(k)$ using our refined formulation for $f(k)$. We saw that

• $f^{(q-1)}(0) = (-1)^q(-2)^q \dots (-n)^q$.

•
$$
f^{(i)}(k) = 0
$$
 for all $i < q - 1$.

- $f^{(q-1)}(0) = (-1)^q(-2)^q \dots (-n)^q$.
- $f^{(i)}(k) = 0$ for all $i < q 1$.
- What about for all other values of i and k ?

- $f^{(q-1)}(0) = (-1)^q(-2)^q \dots (-n)^q$.
- $f^{(i)}(k) = 0$ for all $i < q 1$.
- What about for all other values of i and k ?
	- If $k \neq 0$, then clearly $f^{(q-1)}(k) = 0$.

- $f^{(q-1)}(0) = (-1)^q(-2)^q \dots (-n)^q$.
- $f^{(i)}(k) = 0$ for all $i < q 1$.
- What about for all other values of i and k ?
	- If $k \neq 0$, then clearly $f^{(q-1)}(k) = 0$.
	- If $i \geq q$ and $k \neq 0$, then the term that remains must have had $(x - k)^q$ differentiated q times, leaving us with a factor of q! in the numerator.

We want to now focus on making some ground with $F(k)$ using our refined formulation for $f(k)$. We saw that

- $f^{(q-1)}(0) = (-1)^q(-2)^q \dots (-n)^q$.
- $f^{(i)}(k) = 0$ for all $i < q 1$.
- What about for all other values of i and k ?
	- If $k \neq 0$, then clearly $f^{(q-1)}(k) = 0$.
	- If $i \geq q$ and $k \neq 0$, then the term that remains must have had $(x - k)^q$ differentiated q times, leaving us with a factor of q! in the numerator. But this implies that

$$
f^{(q)}(k) = \frac{q! \cdot X}{(q-1)!},
$$

for some integer X. In other words, $f^{(i)}(k)$ is an integer multiple of q.

Therefore, what we have in $F(k)$ are some integral terms that is divisible by q and $f^{(q-1)}(0)$.

Therefore, what we have in $F(k)$ are some integral terms that is divisible by q and $f^{(q-1)}(0)$.

• This tells us that $F(k)$ is an integer and so, $a_k \cdot F(k)$ is also an integer.
Therefore, what we have in $F(k)$ are some integral terms that is divisible by q and $f^{(q-1)}(0)$.

• This tells us that $F(k)$ is an integer and so, $a_k \cdot F(k)$ is also an integer. If we can now show that the sum is necessarily non-zero for large enough q , then we are done (why?).

Therefore, what we have in $F(k)$ are some integral terms that is divisible by q and $f^{(q-1)}(0)$.

- This tells us that $F(k)$ is an integer and so, $a_k \cdot F(k)$ is also an integer. If we can now show that the sum is necessarily non-zero for large enough q , then we are done (why?).
- Note that

$$
\sum_{k=0}^n a_k \cdot F(k)
$$

is composed of terms that are divisible by q and $f^{(q-1)}(0)$. If we can enforce $f^{(q-1)}(0)$ to not be divisible by q , then we are effectively there!

Therefore, what we have in $F(k)$ are some integral terms that is divisible by q and $f^{(q-1)}(0)$.

- This tells us that $F(k)$ is an integer and so, $a_k \cdot F(k)$ is also an integer. If we can now show that the sum is necessarily non-zero for large enough q , then we are done (why?).
- Note that

$$
\sum_{k=0}^n a_k \cdot F(k)
$$

is composed of terms that are divisible by q and $f^{(q-1)}(0)$. If we can enforce $f^{(q-1)}(0)$ to not be divisible by q , then we are effectively there!

• Recall that $f^{(q-1)}(0) = (-1)^q \cdot (n!)^q$. If $q > n$ and prime, then q cannot appear in the prime factorisation of n! which implies that it cannot appear in the factorisation of $(n!)^q$. Thus, we let $q > n$ be prime.

How do we ensure that $a_0 \cdot F(k)$ is not a multiple of q?

How do we ensure that $a_0 \cdot F(k)$ is not a multiple of q?

26/33

• We first showed that $F(k)$ could not be a multiple of q.

How do we ensure that $a_0 \cdot F(k)$ is not a multiple of q?

- We first showed that $F(k)$ could not be a multiple of q.
- It is still possible that a_0 is a multiple of q. The easy fix is to enforce $q > |a_0|$.

How do we ensure that $a_0 \cdot F(k)$ is not a multiple of q?

- We first showed that $F(k)$ could not be a multiple of q.
- It is still possible that a_0 is a multiple of q. The easy fix is to enforce $q > |a_0|$.

Putting these together, we see that $f^{\left(q-1\right) }\left(0\right)$ is never a multiple of $q;$ this implies that the sum $\sum_{k=1}^{n} a_k \cdot F(k)$ is non-zero for large enough q. $k=0$

The contradiction!

• On the one hand, we said that

$$
\left|\sum_{k=0}^n a_k e^k \int_0^k e^{-t} \cdot f(t) dt \right| \to 0
$$

as
$$
q \rightarrow \infty
$$
.

The contradiction!

• On the one hand, we said that

$$
\left|\sum_{k=0}^n a_k e^k \int_0^k e^{-t} \cdot f(t) dt \right| \to 0
$$

as $q \rightarrow \infty$.

• On the other hand, we also said that

$$
\sum_{k=0}^n a_k F(k)
$$

is a non-zero integer as $q \rightarrow \infty$.

The contradiction!

• On the one hand, we said that

$$
\left|\sum_{k=0}^n a_k e^k \int_0^k e^{-t} \cdot f(t) dt \right| \to 0
$$

as $q \rightarrow \infty$.

• On the other hand, we also said that

$$
\sum_{k=0}^n a_k F(k)
$$

is a non-zero integer as $q \rightarrow \infty$.

This is the contradiction! Therefore, our assumption (that e is algebraic) must have been incorrect; thus, e is transcendental.

Putting everything together…

That was a lot to work through, so let's summarise everything here!

• Suppose that *e* is *algebraic*; then there exist a polynomial with integer coefficients a_j (with $a_0, a_n \neq 0$) such that

$$
a_0+a_1e+\cdots+a_ne^n=0.
$$

Putting everything together…

That was a lot to work through, so let's summarise everything here!

• Suppose that *e* is *algebraic*; then there exist a polynomial with integer coefficients a_j (with $a_0, a_n \neq 0$) such that

$$
a_0+a_1e+\cdots+a_ne^n=0.
$$

• Let $p > n$, a_0 be prime and consider the function

$$
f(x) = \frac{x^{p-1}(x-1)^p(x-2)^p \cdots (x-n)^p}{(p-1)!}
$$

.

Putting everything together…

That was a lot to work through, so let's summarise everything here!

• Suppose that *e* is *algebraic*; then there exist a polynomial with integer coefficients a_j (with $a_0, a_n \neq 0$) such that

$$
a_0+a_1e+\cdots+a_ne^n=0.
$$

• Let $p > n$, a_0 be prime and consider the function

$$
f(x) = \frac{x^{p-1}(x-1)^p(x-2)^p \cdots (x-n)^p}{(p-1)!}.
$$

• Letting
$$
F(x) = \sum_{i=0}^{n} f^{(i)}(x)
$$
, we can see that

$$
\sum_{k=0}^{n} a_k e^k \int_0^k e^{-t} \cdot f(t) dt = -\sum_{k=0}^{n} a_k \cdot F(k).
$$

• The contradiction comes from showing that the left side converges to 0 for large enough p , while the right side is a non-zero integer for large enough p.

If $\{\alpha_1, \alpha_2, \ldots, \alpha_n\}$ is a collection of *algebraic numbers* that is linearly independent over $\mathbb Q,$ then the set $\{e^{\alpha_1}, e^{\alpha_2}, \ldots, \ldots, e^{\alpha_n}\}$ forms a set such that no element in the set is a root of any non-trivial polynomial equations with coefficients in Q.

If $\{\alpha_1, \alpha_2, \ldots, \alpha_n\}$ is a collection of *algebraic numbers* that is linearly independent over $\mathbb Q,$ then the set $\{e^{\alpha_1}, e^{\alpha_2}, \ldots, \ldots, e^{\alpha_n}\}$ forms a set such that no element in the set is a root of any non-trivial polynomial equations with coefficients in Q.

• But note that one can always transform a polynomial with rational coefficients to a polynomial with integer coefficients.

If $\{\alpha_1, \alpha_2, \ldots, \alpha_n\}$ is a collection of *algebraic numbers* that is linearly independent over $\mathbb Q,$ then the set $\{e^{\alpha_1}, e^{\alpha_2}, \ldots, \ldots, e^{\alpha_n}\}$ forms a set such that no element in the set is a root of any non-trivial polynomial equations with coefficients in Q.

- But note that one can always transform a polynomial with rational coefficients to a polynomial with integer coefficients.
- Thus, the set $\{e^{\alpha_1}, \ldots, e^{\alpha_n}\}$ also forms a set such that no element in the set is a root of any non-trivial polynomial equations with coefficients in \mathbb{Z} .

If $\{\alpha_1, \alpha_2, \ldots, \alpha_n\}$ is a collection of *algebraic numbers* that is linearly independent over $\mathbb Q,$ then the set $\{e^{\alpha_1}, e^{\alpha_2}, \ldots, \ldots, e^{\alpha_n}\}$ forms a set such that no element in the set is a root of any non-trivial polynomial equations with coefficients in Q.

- But note that one can always transform a polynomial with rational coefficients to a polynomial with integer coefficients.
- Thus, the set $\{e^{\alpha_1}, \ldots, e^{\alpha_n}\}$ also forms a set such that no element in the set is a root of any non-trivial polynomial equations with coefficients in \mathbb{Z} .
	- But this implies that each e^{α_i} is transcendental.

Proving that e and π are transcendental

• Proving that *e* and π are transcendental is a direct consequence of the theorem.

Proving that *e* and π are transcendental

- Proving that *e* and π are transcendental is a direct consequence of the theorem.
	- The set {1} is a linearly independent set of a single algebraic number. Therefore, $e^1 = e$ is transcendental.

Proving that e and π are transcendental

- Proving that e and π are transcendental is a direct consequence of the theorem.
	- The set $\{1\}$ is a linearly independent set of a single algebraic number. Therefore, $e^1 = e$ is transcendental.
	- If π were algebraic, then πi is also algebraic. But this implies that the set $\{1,\pi i\}$ forms a linearly independent set of algebraic numbers, which implies that the elements of $\{e^1, e^{\pi i}\}$ are themselves transcendental. But $e^{\pi i} + 1 = 0$. Contradiction!

Concluding Remarks

• In this talk, we work exclusively with transcendence over \mathbb{Q} ; we can extend this to other fields too!

Concluding Remarks

- In this talk, we work exclusively with transcendence over \mathbb{Q} ; we can extend this to other fields too!
	- If we define polynomials whose coefficients come from \mathbb{R} , then e and π are no longer transcendental since $x - e$ and $x - \pi$ are polynomials in this polynomial ring.

Concluding Remarks

- In this talk, we work exclusively with transcendence over \mathbb{Q} ; we can extend this to other fields too!
	- If we define polynomials whose coefficients come from \mathbb{R} , then e and π are no longer transcendental since $x - e$ and $x - \pi$ are polynomials in this polynomial ring.
- Proving transcendence is quite hard! We know that e and π are separately transcendental but we don't know whether $e + \pi$ is transcendental.