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Algebraic and Transcendental Numbers

® Algebraic: can be generated from algebraic equations.

An algebraic number is a number that is the root of some polynomial
with integer coefficients; that is, « is algebraic if there exist a
polynomial f € Z[x] such that

ag+aa+--+aa” =0

where o; € Z foreachi=0,...,nand a, # 0.

® A number is said to be transcendental if it is not algebraic.
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® Any rational number k = p/q is algebraic because it is the root
of the equation
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Algebraic and Transcendental Numbers

Any rational number k = p/q is algebraic because it is the root
of the equation

f(x) =gx—p.

V2 is algebraic because it is a root of the equation

f(x)=x*=-2.

i is algebraic because it is a root of the equation

f(x) = x>+ 1.

Let ¢, be a primitive n-th root of unity. Then ¢, is algebraic
because it is a root of the equation

f(x)=x"-1.
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Existence of Transcendental Numbers

Do transcendental numbers even exist in the first place? (Yes!)

The algebraic numbers form a countable set.

Proof.

Given an integer N and integer coefficients ag, a1, . . ., ay, we see
that the polynomial

anxN 4+ ax + ag (1

has at most N many solutions (from the Fundamental Theorem of
Algebra).
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Existence of Transcendental Numbers

Do transcendental numbers even exist in the first place? (Yes!)

The algebraic numbers form a countable set.

Proof.

Given an integer N and integer coefficients ag, a1, . . ., ay, we see
that the polynomial

anxN 4+ ax + ag (1

has at most N many solutions (from the Fundamental Theorem of
Algebra). Denote Ay q4,,...ay to be the set of roots of (1), so that
|AN.gq....an] < N, which is clearly countable. O
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Existence of Transcendental Numbers

Proof continued...
Let By be the set of roots of polynomials of degree N.
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Existence of Transcendental Numbers

Proof continued...
Let By be the set of roots of polynomials of degree N. Therefore, it is
easy to see that

BN = U AN,ag,...,aN;
(an,an—-1...,a0) EZ\{0} XZX---XZ

which is a countable union of countable sets.
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Existence of Transcendental Numbers

Proof continued...

Let By be the set of roots of polynomials of degree N. Therefore, it is
easy to see that

BN = U AN,ag,...,aN;
(an,an—-1...,a0) EZ\{0} XZX---XZ

which is a countable union of countable sets. Therefore, By is also
countable.
Finally, the set of algebraic numbers is exactly

A=|B,
neN

which is, again, a countable union of countable sets. So, A is
countable. O




Existence of Transcendental Numbers

® Since R is uncountable, this implies that the set of
transcendental numbers must be uncountable.

In other words, if you were to draw a real number out of a hat, it is
more likely to be transcendental than algebraic!
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Proof outline

We outline the proof with two main steps that we will explore in
greater detail.

1. Show that

ex~/xe_t-f(t) dt:eX~f(0)—f(x)+ex/xe_t~f’(t) dt

0 0
and consider a suitable function for f(t) to define another
series of functions F(x).

2. By choosing a suitable function for f(t), arrive at a
contradiction that shows that e must indeed be transcendental.






ex./o e -f(t)dt=e"-f(0)—f(x)+e"‘/0 et F (8 dt J
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Proof (part I)

ex-/ e_t-f(t)dt:ex-f(O)—f(x)+eX/ e’ ' f(t)dt

0 0

We begin with integration by parts on the integral.
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Proof (part I)

X

ex'/oxe‘“ﬂt)dt:e*-f<o>—f<x>+e*/0 et f(t) dt

We begin with integration by parts on the integral.

/Oxe‘t-f(t) dt = (/ e‘f) f(t)

—F(0) e f(x) + / et (1) dt.

X—t_/ d
0+/0 (1) dt
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Proof (part I)

X

ex-/oxe_t-f(t)dt:ex-f(o) —f(x)+e"/0 e - f(t) dt

We begin with integration by parts on the integral.

/Oxe‘f-f(t) dt = (/ e_t) f(t)

—F(0) e f(x) + / et (1) dt.

X—t_/ d
0+‘/Oe f(t) dt

Therefore,

ex-/xe_t-f(t) dt=¢€"-f(0) —f(x)+eX/Xe_t-f’(t) dt,

0 0

as required.
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Proof (part I)

X

ex-/oxe_t-f(t)dt=ex-f(0) —f(x)+e)‘/0 e - f(t) dt

We can see that by replacing f(t) on the left hand side with f’(t),
we indeed obtain the middle expression. In other words, we have
that

e (/Oxe_t~f(t) dt—‘/oxe_t-f'(t) dt) =& - f(0) — f(x).
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Proof (part I)

eX(Axe—t.f(t)dt_'/()xe—f.f/(t)dt):ex_f(o)_f(x).

Let’s explore this relation a little bit. By replacingf(i) with f(,-+1)’ we
can see that

e (/0 et f(t) dt—/0 e f(t) dt) =€ f(0) — f(x),
e* (/OX et f(t) dt - /OX et (1) dt) =& - f(0) - f'(x),

&~ ('/OX et FUO(p) dt - /OX et fUn (p) dt) = - fU(0) = £ ().
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Proof (part I)

Therefore, we see that

% X k k
. ot Y R e) N D= £
¢ (/0 et F(b) dt /0 et f (t)dt) e ;f (0) ;f (x).



14/33

Proof (part I)

Therefore, we see that

k

X X P k
X —t - +1 X i i
e (/0 e -f(t)dt—‘/o et f( )(t)dt):e §f()(0)—i§:0f()(x).

i=0

We make two observations:

® If we can freely choose f, ideally we want to choose f in such a
way where taking high enough derivatives eventually land us
at 0.
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Proof (part I)

Therefore, we see that

k

X X P k
X —t - +1 X i i
e (/0 e -f(t)dt—‘/o et f( )(t)dt):e §f()(0)—i§:0f()(x).

i=0

We make two observations:

® If we can freely choose f, ideally we want to choose f in such a
way where taking high enough derivatives eventually land us
at 0.
® By letting F(x) = Z;’iof(") (x), we can re-express the equality
above.
Therefore, we will define f to be some polynomial; the construction
of f is yet to be determined but we just know that it is some
polynomial.



Therefore, as k — oo, fox et fU (1) dt — 0.



Proof (part I)

Therefore, as k — oo, fox et F*D (1) dt — 0. We let
F(x) = Z;’iof(") (x) such that we can write the previous expression
exactly as

e - ‘/Oxe_t - f(t)dt =€ - F(0) — F(x).
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Proof (part I)

Therefore, as k — oo, fox et F*D (1) dt — 0. We let
F(x) = Z;’iof(") (x) such that we can write the previous expression
exactly as

e - ‘/Oxe_t - f(t)dt =€ - F(0) — F(x).

This finishes the first part of the proof; we now proceed with the
proof.
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Proof (part II)

As with most (if not all) transcendental proofs, we assume that e is
algebraic. Therefore, there exist some polynomial A(t) with integer
coefficients a; (with ay, a, # 0) such that A(e) = 0; that is,

ao + are+ ae* + -+ ape” = 0.



16/33

Proof (part II)

As with most (if not all) transcendental proofs, we assume that e is
algebraic. Therefore, there exist some polynomial A(t) with integer
coefficients a; (with ay, a, # 0) such that A(e) = 0; that is,

ao + are+ ae* + -+ ape” = 0.

Here, we can generate a series of equalities by setting x = k for each
k=0,1,2,...,m thatis,

k
akek/ et f(t) dt = agek - F(0) — ay - F(k)
0

or

n k n n

Zakek‘/O el f(t)dt= F(O)Zake/< - Zak - F(k).

k=0 k=0 k=0
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Proof (part II)

This is equivalent to saying

n k n

Z:akek/0 et f(t)dt= —Zak - F(k)

k=0 k=0

since Y7_, axek = 0.



17/33

Proof (part II)

This is equivalent to saying

n k n

Z:akek/0 et f(t)dt= —Zak - F(k)

k=0 k=0

since Y7_, axek = 0.

We are now in a position to carefully choose f. How could we
choose such a polynomial?

Let’s explore the left side a little bit first! Our goal is to find some
insight into how big the left side grows.
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Proof (part II)

n k n

> akek/ et f(t)dt == a F(k)

k=0 0 k=0

We see that

Zn:akek‘/oke_t~f(t) dt
k=0

/Oke‘t«f(t)dt

n
< Zlakekl'
k=0
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Proof (part II)

n

k
> akek/O et f(t)dt == a F(k)

k=0 k=0

We see that

Zake / - f(t) dt

n

< ) laet|-

k=0

/Oke‘t«f(t) dt|.

® How big does the integral grow? Since k < n, then we have that

/Oke-f-f(t) dt /O”e—f.f(t) dt| < /On}e—f-f(t){ dt.

<
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Proof (part II)

Let’s try bounding |e‘t -f(t)| on the interval [0, n].
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that e ! attains a maximum on this interval. Let’s call it M.
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Proof (part II)

Let’s try bounding |e‘t -f(t)| on the interval [0, n].
e Since e ! is continuous on the closed interval [0, n], we know
that e~! attains a maximum on this interval. Let’s call it M.

® Therefore, [e™" - f(t)| < M- |f (D).

® |n other words, we obtain the bound

k
/ el f(t)dt
0

Thus, if we can force f to have a maximum on the interval [0, n],
then we can achieve a nice bound on the overall integral.
What about the right hand side?

s/o M- f(8)] dt.
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Proof (part II)

n k n

Z akek/ et f(t)dt = — Z a - F(k)

k=0 0 k=0

Recall that F(k) = Zf(i)(k). Can we make this sum arbitrarily
i=0
large?
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Proof (part II)

n k n

Z akek/ et f(t)dt = — Z a - F(k)

k=0 0 k=0

(o)

Recall that F(k) = Zf(i)(k). Can we make this sum arbitrarily
i=0
large?
® Firstly, we see that k ranges from 0 to n. This tells us that we
might want to consider a product of linear polynomials; that is,
consider

gx) =x(x—-1)(x-2)---(x—n)
since g(k) = 0 foreach k=0,...,n.
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Proof (part II)

n k n

Zakek/ e—f-f(t)dtz—zak-r(k)

k=0 0 k=0

(o]

Recall that F(k) = Zf(i)(k). Can we make this sum arbitrarily
i=0
large?

® Firstly, we see that k ranges from 0 to n. This tells us that we

might want to consider a product of linear polynomials; that is,
consider

8(x) =x(x =N (x=2)---(x—n)
since g(k) = 0 foreach k=0,...,n.
e Can we say anything about f() (k)?
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Proof (part II)

° If we differentiate x(x — 1)(x — 2) - - - (x — n) once, then g’(0)
simply depends on one term since every other term must
contain a factor of x.
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contain a factor of x.
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° If we differentiate x(x — 1)(x — 2) - - - (x — n) once, then g’(0)
simply depends on one term since every other term must
contain a factor of x.

e If we differentiate x*(x — 1)?--- (x — n)? once, then

g)=g)=---=g(n).
* If we differentiate x>(x — 1)3- - (x — n)® once, then
g)=g)=---=g(n).

® However, if we differentiate x3(x — 1)3- - (x — n)3 twice, then
we also get g”7(0) = g"”"(1) =---=g"(n).
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Proof (part II)

° If we differentiate x(x — 1)(x — 2) - - - (x — n) once, then g’(0)
simply depends on one term since every other term must
contain a factor of x.

e If we differentiate x*(x — 1)?--- (x — n)? once, then

g)=g)=---=g(n).
* If we differentiate x>(x — 1)3- - (x — n)® once, then
g) =g =---=¢g(n).
® However, if we differentiate x3(x — 1)3- - (x — n)3 twice, then
we also get g”7(0) = g"”"(1) =---=g"(n).

Perhaps, we’d want to set f(x) = x9(x — 1)9...(x — n)9 for some
large enough g that we can freely choose...



22/33

Proof (part II)

® Since x(x — 1) --- (x — n) is continuous on the interval [0, n],
then such a function attains a maximum - say N.
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Proof (part II)

® Since x(x — 1) --- (x — n) is continuous on the interval [0, n],
then such a function attains a maximum - say N.

® Therefore, we can place a bound on the previous integral to get

k
/ e f(t)dt
0

S/ M- Nidt=M- Nn.
0
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Proof (part II)

® Since x(x — 1) --- (x — n) is continuous on the interval [0, n],
then such a function attains a maximum - say N.

® Therefore, we can place a bound on the previous integral to get

k
/ e f(t)dt
0

Hmm... ideally, we want this bound to be arbitrarily small. We can
adjust this such that

S/ M- Nidt=M- Nn.
0

x9(x =19+ (x — n)9

Fx) = |
q!

since the factorial function grows much faster than the exponential
functions. Thus, as ¢ — oo, the bound approaches 0.



Flx) = x9(x — 1)‘7q.!. .(x—n)9 ]

Now, what about f() (k)?
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Proof (part II)

(x=19...(x—n)9

x9
£x) = .

Now, what about £ (k)?
® Foreach k, f)(k)y=0ifi<q—1.
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Proof (part II)

(x—=19...(x=n)9

x9
£x) = ;

Now, what about £ (k)?
® Foreach k, f)(k)y=0ifi<q—1.

* If i=q— 1, we also see that f(97" (k) = 0 for each k= 0, ...
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Proof (part II)

(x—=19...(x=n)9

x9
Fx) = |
q!

Now, what about £ (k)?
® Foreach k, f)(k)y=0ifi<q—1.
® Ifi=qg—1, we also see thatf(q_”(k) =0foreachk=0,...,n
® This doesn’t give us much to work with. But removing one of
the powers of x gives us a nice characterisation: it turns out that

o - LDt
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Proof (part II)

(x—=19...(x=n)9

x9
Fx) = |
q.

Now, what about £ (k)?
® Foreach k, f)(k)y=0ifi<q—1.
® Ifi=qg—1, we also see thatf(q_”(k) =0foreachk=0,...,n
® This doesn’t give us much to work with. But removing one of
the powers of x gives us a nice characterisation: it turns out that

o - LDt

® To clean this up, we can refine the denominator to be (g — 1)! so
that £(9-1)(0) gives a nice expression.
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Proof (part II)

(x—=19...(x=n)9

x9
Fx) = |
q.

Now, what about £ (k)?
® Foreach k, f)(k)y=0ifi<q—1.
® Ifi=qg—1, we also see thatf(q_”(k) =0foreachk=0,...,n
® This doesn’t give us much to work with. But removing one of
the powers of x gives us a nice characterisation: it turns out that

o - LDt

® To clean this up, we can refine the denominator to be (g — 1)! so
that £(9-1)(0) gives a nice expression.
® Therefore, refining f gives us

B xT Y (x=1)9---(x=n)9
A PR]
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Proof (part II)

We want to now focus on making some ground with F(k) using our
refined formulation for f (k).
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We want to now focus on making some ground with F(k) using our
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® If i > gand k # 0, then the term that remains must have had
(x — k)9 differentiated g times, leaving us with a factor of g! in
the numerator.



24/33

Proof (part II)

We want to now focus on making some ground with F(k) using our
refined formulation for f (k). We saw that

© FON(0) = (-1)I=2)7... (-n)".
o f(k)y=0foralli<q-1.
® What about for all other values of i and k?

® If k # 0, then clearly £(9=" (k) = 0.

® If i > gand k # 0, then the term that remains must have had
(x — k)9 differentiated g times, leaving us with a factor of g! in
the numerator. But this implies that

ql- X
R

for some integer X. In other words, £V (k) is an integer multiple
of q.

£ (k) =




Proof (part II)

Therefore, what we have in F(k) are some integral terms that is
divisible by g and f(9-1(0).
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Proof (part II)
Therefore, what we have in F(k) are some integral terms that is
divisible by g and f(9-1(0).

® This tells us that F(k) is an integer and so, a; - F(k) is also an
integer.



Proof (part II)

Therefore, what we have in F(k) are some integral terms that is
divisible by g and f(9-1(0).
® This tells us that F(k) is an integer and so, a; - F(k) is also an
integer. If we can now show that the sum is necessarily
non-zero for large enough g, then we are done (why?).
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Therefore, what we have in F(k) are some integral terms that is
divisible by g and f(9-1(0).
® This tells us that F(k) is an integer and so, a; - F(k) is also an
integer. If we can now show that the sum is necessarily
non-zero for large enough g, then we are done (why?).

® Note that

n

> a- Fk

k=0

is composed of terms that are divisible by g and f(9=1(0). If we

can enforce f(971(0) to not be divisible by g, then we are
effectively there!
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Proof (part II)

Therefore, what we have in F(k) are some integral terms that is
divisible by g and f(9-1(0).
® This tells us that F(k) is an integer and so, a; - F(k) is also an
integer. If we can now show that the sum is necessarily
non-zero for large enough g, then we are done (why?).

® Note that

n

> a- Fk

k=0

is composed of terms that are divisible by g and f(9=1(0). If we

can enforce f(971(0) to not be divisible by g, then we are
effectively there!

e Recall that f(9=D(0) = (=1)9 - (n)9. If ¢ > nand prime, then g
cannot appear in the prime factorisation of n! which implies

that it cannot appear in the factorisation of (n!)9. Thus, we let
q > nbe prime.
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Proof (part II)

How do we ensure that ay - F(k) is not a multiple of q?
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Proof (part II)

How do we ensure that ay - F(k) is not a multiple of q?
® We first showed that F(k) could not be a multiple of q.

e It is still possible that gy is a multiple of g. The easy fix is to
enforce q > |ay|.
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Proof (part II)

How do we ensure that ay - F(k) is not a multiple of q?
® We first showed that F(k) could not be a multiple of q.

e It is still possible that gy is a multiple of g. The easy fix is to
enforce q > |ay|.

Putting these together, we see that £(91(0) is never a multiple of g;

this implies that the sum Z ay - F(k) is non-zero for large enough q.
k=0
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The contradiction!

® On the one hand, we said that

Zn:akek'/o‘ke_t - f(t) dt
k=0

-0

as q — oo.
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® On the one hand, we said that
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® On the other hand, we also said that

n

Z aF (k)

k=0
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The contradiction!

® On the one hand, we said that

-0

ake - f(t) dt

as q — oo.
® On the other hand, we also said that

n

Z aF (k)

k=0

is a non-zero integer as ¢ — 0.

This is the contradiction! Therefore, our assumption (that e is
algebraic) must have been incorrect; thus, e is transcendental.
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Putting everything together...

That was a lot to work through, so let’s summarise everything here!
® Suppose that e is algebraic; then there exist a polynomial with
integer coefficients a; (with ag, a, # 0) such that

ag+aie+---+aye” =0.

® Let p > n, qy be prime and consider the function

B xP~ 1 (x = 1)P(x=2)P---(x = n)P
I = (p=! |

n
® Letting F(x) = Zf(i)(x), we can see that
i=0

k
Z akek/ et f(t) dt = —Z ay - F(k).

k=0 0 k=0
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Putting everything together...

® The contradiction comes from showing that the left side
converges to 0 for large enough p, while the right side is a
non-zero integer for large enough p.
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such that no element in the set is a root of any non-trivial
polynomial equations with coefficients in Q.
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The Lindemann-Weierstrass Theorem

If {at1, a2, . . ., n} is a collection of algebraic numbers that is linearly
independent over Q, then the set {€*',e%2,...,..., e*} forms a set
such that no element in the set is a root of any non-trivial
polynomial equations with coefficients in Q.

® But note that one can always transform a polynomial with
rational coefficients to a polynomial with integer coefficients.
® Thus, the set {e™,..., e*} also forms a set such that no
element in the set is a root of any non-trivial polynomial
equations with coefficients in Z.
® But this implies that each e% is transcendental.
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Proving that e and & are transcendental

® Proving that e and  are transcendental is a direct consequence
of the theorem.

® The set {1} is a linearly independent set of a single algebraic
number. Therefore, e' = e is transcendental.

® If = were algebraic, then 7/ is also algebraic. But this implies
that the set {1, zi} forms a linearly independent set of algebraic
numbers, which implies that the elements of {e', ™'} are
themselves transcendental. But e* + 1 = 0. Contradiction!
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Concluding Remarks

® In this talk, we work exclusively with transcendence over Q; we
can extend this to other fields too!
® If we define polynomials whose coefficients come from R, then
e and 7 are no longer transcendental since x — e and x — 7 are
polynomials in this polynomial ring.
® Proving transcendence is quite hard! We know that e and r are
separately transcendental but we don’t know whether e + 7 is
transcendental.
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