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1. Integers and the Natural Numbers



Commutative ring

Let R be a non-empty set with addition (+) and multiplication (·).
Then R is a commutative ring if the following axioms hold, for all
a, b, c ∈ R.

(I) (Closure) a+ b ∈ R, a · b ∈ R.

(II) (Associativity) (a+ b) + c = a+ (b+ c), (a · b) · c = a · (b · c).
(III) (Distributivity) a · (b+ c) = a · b+ a · c.
(IV) (Commutativity) a+ b = b+ a, a · b = b · a.

(V) (Additive identity) There is an element 0 ∈ R such that
0 + a = a for all a ∈ R.

(VI) (Additive inverse) For every a ∈ R, there is an element x ∈ R
such that a+ x = 0. We denote x as −a.
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Field

A field F is a commutative ring with the multiplicative identity 1,
where all non-zero elements have a multiplicative inverse.

To show that F is a field, we show:

F is a commutative ring,

F has the multiplicative identity 1,

Every non-zero element a ∈ F, there is an element b ∈ F such that

a · b = 1.
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Field

(2018, Semester 2) Q1 i) c) and (2017, Semester 2) Q1 v)

Is Z15 a field?

We need to check to see whether every non-zero element in Z15 has a
multiplicative inverse. We can do this by setting up a table,
disregarding the 0 element.

× 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14
2 2 4 6 8 10 12 14 1 3 5 7 9 11 13
3 3 6 9 12 0 3 6 9 12 0 3 6 9 12

Since 3 6= 0 and 3 does not have a multiplicative inverse, then Z15 is
NOT a field.
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Field

(2016, Semester 2) Q1 vii)

Show that Z8 is not a field.

You can show that the elements 2 and 4 have no multiplicative inverse.

× 1 2 3 4 5 6 7

2 2 4 6 0 2 4 6
4 4 0 4 0 4 0 4

In fact, Zp is a field if and only if p is prime! For example, Z2 is a field
but Z4 is not!

An important result!

Let F be a field and suppose that a, b ∈ F. If a · b = 0, then either a = 0
or b = 0.
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Divisibility

You’ve come cross divisibility in primary and high school; we’re going
to make it a bit more rigorous!

Let a and b be integers with a 6= 0. We say that a | b if there exists an
integer k such that b = ka. We say that a divides b.

Some special properties of divisibility:

(Reflexivity) a | a for all a 6= 0.

(Anti-symmetry) If a | b and b | a, then b = ±a.

(Transitivity) If a | b and b | c, then a | c.
(Linear combination) If a | b and a | c, then a | kb+ `c for any
integers k, `.

We prove the anti-symmetry property.
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Divisibility

(2016, Semester 2) Q1 i)

Define what it means to say that for two integers a and b, a divides b.
Prove that if a | b and b | a, then a = ±b.

We say that a | b if there is an integer k such that

b = ka.

Using this definition, let k and m be integers such that

b = ka, a = mb.

Then substituting one expression into another, we have

b = k(mb) = (km)b.
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Divisibility

(2016, Semester 2) Q1 i)

Define what it means to say that for two integers a and b, a divides b.
Prove that if a | b and b | a, then a = ±b.

Rewriting the expression we found gives us

b− (km)b = 0 =⇒ b(1− km) = 0.

So either b = 0 or km = 1. If b = 0, then a is necessarily 0 and we are
done. If km = 1, then either k = m = 1 or k = m = −1 since k,m ∈ Z.
This proves that a = b for k = m = 1 or a = −b for k = m = −1 which
implies that a = ±b.
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Divisibility

(2019, Term 2) Q1 i)

Prove that if a | b and b | (a+ c), then a | c.

Suppose that a | b and b | (a+ c). Then there exist integers k,m ∈ Z
such that

b = ka, (a+ c) = mb.

Substituting the expression of b gives

(a+ c) = m(ka) = (mk)a =⇒ c = (mk)a− a = (mk − 1)a.

Since m, k ∈ Z, then mk − 1 ∈ Z. Hence a | c.
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Greatest common divisor

Suppose that d divides both a and b. We say that d is the greatest
common divisor of a and b if and only if c ≤ d for all c where c | a
and c | b.

In other words, d = gcd(a, b) only when

d | a and d | b,
If c | a and c | b, then c ≤ d.
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Greatest common divisor

(2016, Semester 2) Q1 ii)

Let m be the product of all the primes between 10 and 20 and let n
be the product of all the integers between 30 and 40 (inclusive). Find
gcd(m,n).

We shall find the primes between 10 and 20 that appear in the prime
factorisation of integers from 30 and 40. We see that

11 appears in the prime factorisation of 33: 33 = 11× 3.

13 appears in the prime factorisation of 39: 39 = 13× 3.

17 appears in the prime factorisation of 34: 34 = 17× 2.

19 appears in the prime factorisation of 38: 38 = 19× 2.

So gcd(m,n) = 11× 13× 17× 19.
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Greatest common divisor

(2017, Semester 2) Q1 i) d)

Find the greatest common divisor of 65 and 153.

Tip: Find the prime factorisation of both numbers!

We get

6 = 2× 3 =⇒ 65 = 25 × 35,

15 = 3× 5 =⇒ 153 = 33 × 53.

Then the greatest common divisor is the number that is common to
both factorisations. Hence, gcd(65, 153) = 33 = 27.
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Greatest common divisor

Two integers, m and n, are said to be relatively prime if

gcd(m,n) = 1.
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Greatest common divisor

(2019, Term 2) Q1 i) c)

Show that 286 · 65 and 125 · 153 · 11 + 7 are relatively prime.

Tip: Look at the prime factorisation of the left number and make a
contradiction argument.

For the sake of a contradiction, suppose that 286 · 65 and
125 · 153 · 11 + 7 were not relatively prime. We look at the (unique)
prime factors of 286 · 65. This is easy to compute and we have

286 · 65 =
(
212 × 76

)
·
(
25 × 35

)
= 217 × 35 × 76.

So at least one of 2, 3 or 7 must appear in the right number.
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It’s easy to see that

125 · 153 · 11 does not share a common prime factor with 7.

So if a divides 125 · 153 · 11 + 7, and it divides either 125 · 153 · 11 or 7,
then it must divide the other part as well. But

2 does not divide 7;

3 does not divide 7;

7 does not divide 125 · 153 · 11.

So neither of these prime factors will appear in the prime factorisation
of 125 · 153 · 11 + 7 and thus, no combination of powers of 2, 3 or 7 can
appear in the factorisation either. Thus, the greatest common divisor is
1.
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The Euclidean Algorithm

The Euclidean Algorithm is a simple algorithm to find the greatest
common divisor of two integers. You don’t need to know the in’s and
out’s of the algorithm, just know how to use it.

(General strategy)

• Write the bigger number as a quotient of the smaller number and
a remainder.

• Repeat the process by writing the smaller number as a quotient of
the original remainder and a new remainder.

• Repeat the previous steps until the remainder is 0.
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Bézout’s identity

The greatest common divisor can always be written as a linear
combination of the two numbers.
Bézout’s identity states:

Let m,n be integers (not both zero) and let x, y ∈ Z. Then,

gcd(m,n) = mx+ ny.

However, if c = mx+ ny, then c is not(!!!) necessarily gcd(m,n). In
fact, if c = mx+ ny, then gcd(m,n) | c. If c = 1, then gcd(m,n) = 1
since gcd(m,n) > 0 and the only integers that divide 1 is ±1.
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Prime numbers

A prime number is a number p > 1 that is divisible by 1 and itself –
so it has two factors exactly. As such, we typically do not declare 1 as
a prime number.

(Strategies for questions regarding prime numbers)

• The only even prime p is p = 2. Every other prime is odd.

• For p > 3, p is congruent to 1 or 5 in mod 6.

• (Fundamental Theorem of Arithmetic) Any positive integer
is a (unique up to reordering) factorisation of powers of primes.

For primes p and integers a, b, if p | ab, then either p | a or p | b.
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Prime numbers

(2021, Term 2 – Test 1) Q1 iii)

Find all prime numbers p such that p+ 17 is also a prime number.

• Method 1: If p is prime then p ≥ 2 and importantly p+ 17 > 3. If
p+ 17 is also prime then it must be an odd prime. Note that p+ 17
is odd if and only if p is even. But the only even prime is p = 2.

• Method 2: For a prime p > 3, p is congruent to either 1 or 5 in
modulo 6. If p ≡ 1 (mod 6), then write p = 6k + 1 for some
integer k. Then p+ 17 = (6k + 1) + 17 = 6(k + 3). This can never
be prime since 6 is a composite factor. If p ≡ 5 (mod 6), then
write p = 6m+ 5 for some integer k. Then
p+ 17 = (6k + 5) + 17 = 2(3k + 11). This is prime if and only if
3k + 11 = 1. But this implies that k = −10/3 which is not an
integer. Thus, this can never happen. And so, no prime p > 3
works. It remains to check p = 2 and p = 3 and only p = 2 works.
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Fundamental Theorem of Arithmetic

Every positive integer can be uniquely represented as a product of
one or more primes.

We can extend this to negative integers by adding −1 into the
product.
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A harder question!!

(2021, Term 2 – Test 1) Q2 iii)

What is gcd(2n+ 1, 2n(n+ 1)) for an integer n?

We show that

gcd(2n+ 1, 2) = gcd(2n+ 1, n) = gcd(2n+ 1, n+ 1) = 1.

Since 2 is even and prime, then no odd number can divide 2, so
gcd(2n+ 1, 2) = 1. For gcd(2n+ 1, n), note that

gcd(2n+ 1, n) = gcd(2n+ 1− n, n) = gcd(n+ 1, n) = 1.

For gcd(2n+ 1, n+ 1), note that

gcd(2n+ 1, n+ 1) = gcd(2n+ 1− (n+ 1), n+ 1) = gcd(n, n+ 1) = 1.

Term 2, 2021 UNSW Mathematics Society 24 / 171



(2021, Term 2 – Test 1) Q2 iii)

What is gcd(2n+ 1, 2n(n+ 1)) for an integer n?

Hence, we see that

gcd(2n+ 1, 2n(n+ 1)) = gcd(2n+ 1, n(n+ 1))

= gcd(2n+ 1, n+ 1)

= 1.
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2. Representation of Numbers



Base b representation

We can represent a number from base 10 to a number in base b. In
base b, we can represent a number N as

N = an · bn + an−1 · bn−1 + an−2 · bn−2 + · · ·+ a0 · b0︸ ︷︷ ︸
integer part

+ a−1 · b−1 + a−2 · b−2 + · · ·+ a−m · b−m.︸ ︷︷ ︸
fractional part

We can write this number as

N = (anan−1an−2 . . . a0.a−1a−2 . . . a−m)b ,

which is just a concatenation of digits in base b.
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Converting from base m to base n

Base b Algorithm (integer)

Input: N , some number in base m.
Algorithm: Start by splitting the number into its integer and fractional
part.
For the integer part,

(I) Set a = bNc (the integer part of N).

(II)

a = q1 · n+ a0,

q1 = q2 · n+ a1,

. . .

qk = 0 · n+ ak.

Output: a = (akak−1 . . . a1a0)n.
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Converting from base m to base n

Base b Algorithm (fractional)

For the fractional part,

(I) Set x = {N} = N − bNc (the fractional part of N).

(II) Find the highest power of m smaller than x. Then compute the
remainder.

(III) Now take the remainder to be the new x and repeat steps (I) and
(II).

(IV) Terminate when x = 0 or when you have seen x before in your
calculations.

You will have an expression written in terms of power of m.
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Converting from base m to base n

(General strategies for fractional parts)

If a/b is periodic in base 10 (like 1/3 and 2/3), then you should also
expect it to periodic in other bases too. If this is the case:

• See if you can write the remainder as a multiple of your original
number.

• This tells you what the period is in the expansion.
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(2016, Semester 2) Q1 iv)

Write
1

3
in base 2.

Applying the Euclidean algorithm, we see that (finding the highest
powers of 2 smaller than the remainder):

1

3
=

1

22
+

1

12

=
1

22
+

1

3
· 1

4
.

This means that we will have the same procedure with the same
number but every digit will be shifted by 2 to the right. So we will have

1

3
= (0.01)2.
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(2018, Semester 2) Q1 iii)

Write 3/5 in base 2.

Repeat the same idea as before: we find the highest power of 2 smaller
than 3/5; we get

3

5
= 1× 1

2
+

1

10
;

1

10
= 1× 1

24
+

3

80

= 1× 1

24
+

3

5
· 1

24
.

This means that we will have a period of 4 starting from the 4th power
of the expansion. So we have

3

5
= (0.1001)2.
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(2021, Term 2 – Test 1) Q2

Write 7
2

3
in base 4.

Split the number into its integer and fractional parts. For the integer
part, we can write 7 = 1× 4 + 3× 40 so 7 = (13)4.

For the fractional part, find the biggest power of 4 smaller than
2

3
.

2

3
= 2× 1

4
+

1

6

= 2× 1

4
+

1

4
× 2

3
.

This means that we will have a period of 1 starting from the 1st power
of the expansion. So we will have

2

3
= (0.2)4
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(2021, Term 2 – Test 1) Q2

Write 7
2

3
in base 4.

So we have

7
2

3
= (13)4 + (0.2)4 = (13.2)4.
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(2021, Term 2 – Test 1) Q2 ii)

Write (12.021)7 as a rational fraction a/b in base 10.

Split the number up into its integer and fractional parts.

(12.021)7 = (12)7 + (0.021)7.

For the integer part, we can write the expression as

1× 71 + 2× 70 = 9.

For the fractional part, expand the periodic part into a geometric series:

(0.021)7 = 0× 1

7
+

(
2× 1

72
+ 2× 1

74
+ . . .

)
+

(
1× 1

73
+ 1× 1

75
+ . . .

)
.
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(2021, Term 2 – Test 1) Q2 ii)

Write (12.021)7 as a rational fraction a/b in base 10.

So we have

(0.021)7 = 0× 1

7
+

(
2× 1

72
+ 2× 1

74
+ . . .

)
+

(
1× 1

73
+ 1× 1

75
+ . . .

)
=

2

72

(
1 +

1

72
+

1

74
+ . . .

)
+

1

73

(
1 +

1

72
+

1

74
+ . . .

)
=

2

72

(
1

1− 1
72

)
+

1

73

(
1

1− 1
72

)

=
2

72

(
72

48

)
+

1

73

(
72

48

)
=

2

48
+

1

7× 48

=
15

336

=
5

112
.
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(2021, Term 2 – Test 1) Q2 ii)

Write (12.021)7 as a rational fraction a/b in base 10.

To recap:

(I) We split (12.021)7 into (12)7 + (0.021)7.

(II) We found:

(12)7 = 9, (0.021)7 =
5

112
.

(III) So we have

(12.021)7 = 9 +
5

112
=

1013

112
.
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Converting to and from base m2

If we know the expansion of a number in base m, then we can easily
find the expansion in base m2.

General strategy

Group the digits in blocks of 2’s from right to left and convert the
blocks of 2 digits into the respective digit in base m2.

If we know the expansion of a number in base m2, then we can also
convert it to a number in base m.

General strategy

Take each digit in base m2 and rewrite it in base m in blocks of 2’s.
Then concatenate all of them in the same order.
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(2019, Term 2) Q1 ii)

(a) Write 153 in base 3.

(b) Using your calculations for part (a), write the above number in
base 9.

(a) By the Euclidean algorithm,

153 = 1 · 34 + 72,

72 = 2 · 33 + 18,

18 = 2 · 32 + 0.

So
153 = 34 + 2 · 33 + 2 · 32 = (12200)3.
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(2019, Term 2) Q1 ii)

(a) Write 153 in base 3.

(b) Using your calculations for part (a), write the above number in
base 9.

(b) Let’s remind ourselves that

153 = (12200)3.

To convert from base 3 to base 9, we group two digits at a time
from right to left:

01 22 00 .

We add an additional 0 to group up all of the digits into groups of
two.
We see that

(01)3 = (1)9, (22)3 = (8)9, (00)3 = (0)9.

In other words,
153 = (12200)3 = (180)9.
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(2018, Semester 2) Q1 ii)

(a) Write 327 in base 9.

(b) Using your calculations for part (a), write the above number in
base 3.

(a) Similar to the previous part, by the Euclidean algorithm,

327 = 4 · 92 + 3,

3 = 3 · 90 + 0.

So
327 = (403)9.
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(2018, Semester 2) Q1 ii)

(a) Write 327 in base 9.

(b) Using your calculations for part (a), write the above number in
base 3.

(b) From the computation from part (a), split each digit and convert
them into two digits in base 3. For example, 4 is 11 in base 3. So
we have

(4)9 = (11)3, (0)9 = (00)3, (3)9 = (10)3.

So we have
327 = (403)9 = (110010)3.
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(2017, Semester 2) Q1 iv)

(a) Write 375 in base 2.

(b) Using your calculations for part (a), write the above number in
base 4.

(a) Answer: 375 = (101110111)2.

(b) From the right to the left, group each digit in pairs to get

01 01 11 01 11 .

Then write each pair of digits in base 4. We get

(01)2 = 1, (11)2 = 3.

Then concatenate each of them in the same order:

375 = (101110111)2 = (11313)4.
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Base 2 representation – GCD in Binary

Let m,n be positive integers (in base 2).

(i) if m and n are both even, then gcd(m,n) = 2 · gcd(m/2, n/2);

(ii) if m and n are both odd (with m > n), then
gcd(m,n) = gcd(m− n, n);

(iii) if one of m and n is even (assume m is), then
gcd(m,n) = gcd(m/2, n);

(iv) if m = n, then gcd(m,n) = m.
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Continued fractions

Another way to represent a number is by its continued fraction
representation. A continued fraction is of the form

N = a1 +
1

a2 + 1
a3+

1

a4+
1

...

= [a1; a2, a3, a4, . . . ].

Some notes on continued fractions:

• If a continued fraction terminates, then it is rational.

• If a continued fraction is periodic, then it is irrational. We denote
the period by a bar at the top: [a1; a2, a3] denotes that the
continued fraction is periodic by a2 and a3.
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Finding continued fractions I

Continued fraction → number

If N is in continued fraction form, then expand out the continued
fraction and solve from bottom up. Combine two fractions together
and keep simplifying it until you get to the top.

If N is periodic, start by solving for the periodic part and then
re-combine for the final answer.
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Finding continued fractions II

Number → continued fraction – Continued fraction algorithm

Input: N , some number.
Algorithm:

(I) Set a1 = bNc and set r1 = N − a1.

(II) Reciprocate r1 to get
1

r1
.

(III) If we’ve already seen
1

r1
, then we have a period and we can

terminate the algorithm early; otherwise, set a2 =

⌊
1

r1

⌋
and

repeat steps (I) and (II) with a2 and r1.

(IV) Terminate if the numerator hits 1 and include the denominator as
the last digit of the continued fraction representation.

Output: N = [a1; a2, a3, . . . , an].
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Continued fractions – Number → CF

(2016, Semester 2) Q1 iv)

Define the Golden Ratio and find its continued fraction expansion.

Let ϕ be the golden ratio. The value of ϕ is

ϕ =
1 +
√

5

2
.

We begin to find the continued fraction representation.
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(I) Let a1 = bϕc = 1. Then write

r1 = ϕ− a1 =
1 +
√

5

2
− 1 =

−1 +
√

5

2
.

(II) Reciprocate r1 to get

1

r1
=

2

−1 +
√

5
= −2(−1−

√
5)

4
=

1 +
√

5

2
.

(III) We’ve already seen this so our continued fraction terminates with
a period of 1. If we don’t see something we’ve already seen before,

then we repeat step (I) with a2 =

⌊
1

r1

⌋
.

(IV) Output ϕ = [a1; a1] = [1; 1].
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Continued fractions

(2019, Term 2) Q1 iv)

(a) Expand 147/32 into a continued fraction.

(b) Compute the value of the periodic continued fraction [0; 2, 2, 1]
where ∗∗ means a periodic repetition of ∗∗.
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(2019, Term 2) Q1 iv)

Expand 147/32 into a continued fraction.

(I) Let a1 = b147/32c = 4. Then write

r1 = 147/32− a1 =
147− 128

32
=

19

32
.

(II) Reciprocate r1 to get
1

r1
=

32

19
.

(III) Repeat steps (I) and (II) with a2 = b1/r1c = 1. Then write

r2 =
1

r1
− a2 =

32− 19

19
=

13

19
.

(IV) Reciprocate r2 to get
1

r2
=

19

13
.
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(2019, Term 2) Q1 iv)

Expand 147/32 into a continued fraction.

(V) Repeat steps (I) and (II) with a3 = b1/r2c = 1. Then write

r3 =
1

r2
− a3 =

19− 13

13
=

6

13
.

(VI) Reciprocate r3 to get
1

r3
=

13

6
.

(VII) Repeat steps (I) and (II) with a4 = b1/r3c = 2. Then write

r4 =
1

r3
− a4 =

13− 12

6
=

1

6
.

(VIII) Since the numerator is 1, we terminate our algorithm with a5 = 6.
Output

147/32 = [a1; a2, a3, a4, a5] = [4; 1, 1, 2, 6].
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(2019, Term 2) Q1 iv)

Compute the value of the periodic continued fraction [0; 2, 2, 1] where
∗∗ means a periodic repetition of ∗∗.

(I) We can begin by dealing with the periodic part first. Let
x = [0; 2, 1]. Then we have

x =
1

2 + 1
1+ 1

2+ 1

1+
...

=
1

2 + 1
1+x

.

We can solve for x:

x =
1

2 + 1
1+x

=
1

2(1+x)+1
1+x

=
1 + x

3 + 2x
.
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(2019, Term 2) Q1 iv)

Compute the value of the periodic continued fraction [0; 2, 2, 1] where
∗∗ means a periodic repetition of ∗∗.

Continuing from the previous slide, we have

x =
1 + x

3 + 2x
=⇒ x(3 + 2x) = 1 + x,

=⇒ 2x2 + 2x− 1 = 0,

=⇒ x =
−2±

√
12

4
=
−1±

√
3

2
.

Since x > 0, we take x =
−1 +

√
3

2
.
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(2019, Term 2) Q1 iv)

Compute the value of the periodic continued fraction [0; 2, 2, 1] where
∗∗ means a periodic repetition of ∗∗.

(II) Now, we can compute the actual value. Set L = [0; 2, 2, 1]. Then
we have

L = 0 +
1

2 + x
=

1

2 + −1+
√
3

2

=
2

3 +
√

3
=

3−
√

3

3
.

So we have

[0; 2, 2, 1] =
3−
√

3

3
.
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3. Modular arithmetic



The Congruence Relation

For a, n ∈ Z, a mod n is the remainder (in N) obtained when a is
divided by n, that is, r, if

a = nq + r, where 0 ≤ r < n.

We say that integers a and b are congruent modulo n (or a is congruent
to b modulo n), and write a ≡ b(mod n) iff n|(a− b), iff ∃k ∈ Z such
that a = b+ kn.
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The Congruence Relation

Suppose a ≡ b (mod n) and c ≡ d (mod n). Then

• (a+ c) ≡ (b+ d) (mod n)

• ac ≡ bd (mod n)

• am ≡ bm (mod n) for all m ∈ N.
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The Congruence Relation

The congruence relation is an equivalence relation on Z.

1) a ∼ a
2) a ∼ b =⇒ b ∼ a
3) a ∼ b and b ∼ c =⇒ a ∼ c

Thus, Z is partitioned into equivalence classes {[a] | 0 ≤ a < n}.
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The Congruence Relation

The set of integers modulo n

With the natural definition of addition and multiplication, Zn is a
commutative ring with identity (1).

1) Closure under addition

2) Associative under addition

3) Commutative under addition

4) Existence of an additive identity (0)

5) Existence of additive inverses

6) Closure under multiplication

7) Associative under multiplication

8) Distributive under multiplication

9) Commutative under multiplication

10) Existence of multiplicative identity (1).
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The Congruence Relation

(2021, Term 2 - Tutorial Chapter 3) Q3 c)

By working modulo 3, show that 22
n

+ 5 is always composite for every
positive integer n.
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The Congruence Relation

(2021, Term 2 - Tutorial Chapter 3) Q3 c)

By working modulo 3, show that 22
n

+ 5 is always composite for every
positive integer n.

Observe that 2 ≡ −1 (mod 3). Raising both sides to the power of 2n,
we have

22
n ≡ (−1)2

n
(mod 3).

Since 2n is even, then (−1)2
n

= 1. In other words, we have

22
n ≡ 1 (mod 3).

Adding 5 to both sides give us

22
n

+ 5 ≡ 1 (mod 3) + 5 ≡ 0 (mod 3).
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In other words, we have 22
n

+ 5 = 3k for some integer k. But 22
n
> 0

which implies that 22
n

+ 5 > 3 and so k > 1. This implies that 22
n

+ 5
will always have a factor of 3 which means that it is composite for all n.
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Inverses in Zn

A non-zero a in Zn has an inverse iff gcd(a,n)=1.

In general, if ab = ac (mod n), you cannot in general conclude that
b ≡ c (mod n) even if a 6≡ 0 (mod n).
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Inverses in Zn

The commutative ring Zn is a field iff n is a prime.

From the previous slide, we can see that is n is a prime, the all the
elements of Zn have an inverse element. This property in combination
with those inherited from Zn being a commutative ring with identity
implies that the set along with the usual definitions of addition and
multiplication is in fact a field.
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Groups

Definition of a group

Let G be a non-empty set whose elements satisfy the following five
rules:

1) Closure under the group operation

2) Associative under the group operation

3) Commutative under the group operation (Abelian)

4) Existence of an identity element

5) Existence of element inverses

The set Zn forms a commutative group under the operation of addition
(identity is 0) but not under multiplication.
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Common tests for divisibility

• A number is divisible by 2 iff its last digit is divisible by 2.

• A number is divisible by 4 iff the last two digits form a number
which is divisible by 4.

• A number is divisible by 5a iff its last a digits are divisible by 5a.

• A number is divisible by 9 or 3 iff the sum of its digits is divisible
by 9 or 3 respectively.

• Double the last digit and subtract it from the remaining truncated
number. If the result is divisible but 7, then so was the original
number.
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Divisibility Tests

(2021, Term 2 - Tutorial Chapter 3) Q16

Test the number 7689627 for divisibility by 9, 11, 13 and 17.
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Divisibility Tests

(2021, Term 2 - Tutorial Chapter 3) Q16

Test the number 7689627 for divisibility by 9, 11, 13 and 17.

First we will test divisibility by 9 (mostly because it’s easiest).

7 + 6 + 8 + 9 + 6 + 2 + 7 = 45

Since 9 | 45, then 9 | 7689627.
Now we will test divisibility by 11 using the alternate sum test.

7− 6 + 8− 9 + 6− 2 + 7 = 11

Since 11 | 11, then 11 | 7689627.
Testing divisibility by 13 and 17 will require some deeper thinking.
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Divisibility Tests

(2021, Term 2 - Tutorial Chapter 3) Q16

Test the number 7689627 for divisibility by 9, 11, 13 and 17.

Note that 1000 ≡ −1 (mod n). So, we can apply a similar alternating
sum test to 11 except we now need to group 3 digits at a time starting
from the right.

7− 689 + 627 = −55 ≡ 10 (mod n)

Since 13 - 45, then 13 - 7689627.

For 17, we need to pull a few more tricks out of the bag.
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Divisibility Tests

(2021, Term 2 - Tutorial Chapter 3) Q16

Test the number 7689627 for divisibility by 9, 11, 13 and 17.

Let’s begin by trying to develop a method similar to the test for
divisibility by 7. Subtract a multiple y of the number’s last digit b from
the remaining number n−b

10 and assume we’re successful in obtaining a
multiple of 17 (17x) where x, y, b, n ∈ Z+.

17x =
n− b

10
− yb

170x = n− b− 10yb

n = 170x+ (10y + 1)b

n = 17

(
10x+

(
10y + 1

17

)
b

)
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Divisibility Tests

(2021, Term 2 - Tutorial Chapter 3) Q16

Test the number 7689627 for divisibility by 9, 11, 13 and 17.

n = 17

(
10x+

(
10y + 1

17

)
b

)
So, we can see that if we make the right choice of y and the new
number is divisible by 17, so is the original. Since n is an integer, we
need to choose y such that this remains true in our expression.

y = 1 :
10y + 1

17
=

11

17
6∈ Z+

y = 2 :
10y + 1

17
=

21

17
6∈ Z+
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Divisibility Tests

(2021, Term 2 - Tutorial Chapter 3) Q16

Test the number 7689627 for divisibility by 9, 11, 13 and 17.

n = 17

(
10x+

(
10y + 1

17

)
b

)

y = 1 :
10y + 1

17
=

11

17
6∈ Z+

y = 2 :
10y + 1

17
=

21

17
6∈ Z+

...

y = 5 :
10y + 1

17
=

51

17
= 3 ∈ Z+
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Divisibility Tests

(2021, Term 2 - Tutorial Chapter 3) Q16

Test the number 7689627 for divisibility by 9, 11, 13 and 17.

So using y = 5:

768962− 5(7) = 768927

76892− 5(7) = 76857

7685− 5(7) = 7650

765− 5(0) = 765

76− 5(5) = 51 = 3(17)

Hence, by working backwards through the sequence, 17 | 7689627.
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Linear Congruence Equations

The simplest congruence problems are linear congruences.

ax ≡ b (mod n)

These are easy to solve over Q but much more interesting to solve
them over Zn.
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Linear Congruence Equations

Suppose n is a positive integer and d = gcd(a, n).

(i) Then the equation ax ≡ b (mod n) has a solution iff d | b.
(ii) Moreover, if d | b and a = da′, n = dn′, b = db′, then it has d

solutions which are all residues (mod n) congruent to the unique
solution to a′x ≡ b′ (mod n′)

This theorem is really important to remember as you’d hate to waste
time in an exam trying to solve a linear congruence only to get to the
end and realise it doesn’t have a solution.
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Linear Diophantine Equations

What is a Diophantine equation?

A Diophantine equation is an equation where we seek only integer
solutions. Assuming a, b, b ∈ Z, if there is one unknown (ax = b) then
an integer solution exists iff a | b/ Suppose then that there are two
unknowns, thus we seek to solve ax+ by = c.

Important to note that the equation ax+ by = c, where a, b, c ∈ Z has
a solution in Z iff d | c, where d = gcd(a, b). Why do we know this
to be true?

Term 2, 2021 UNSW Mathematics Society 77 / 171



Linear Diophantine Equations

(2016, Semester 2) Q1 iii)

Find all integers x and y with

4x+ 5y = 18.

How many of the solutions lie in the positive quadrant?
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Linear Diophantine Equations

(2016, Semester 2) Q1 iii)

Find all integers x and y with

4x+ 5y = 18.

How many of the solutions lie in the positive quadrant?

We need to consider a modulus that is going to isolate one of the
variables and I like to look at the one with the smallest coefficient first.

4x+ 5y ≡ 18 (mod 5)

4x ≡ 3 (mod 5)

16x ≡ 12 (mod 5)

∴ x ≡ 2 (mod 5)
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Linear Diophantine Equations

(2016, Semester 2) Q1 iii)

Find all integers x and y with

4x+ 5y = 18.

How many of the solutions lie in the positive quadrant?

Now that we know x = 2 + 5t for some t ∈ Z, let’s substitute this back
into the original equation.

4(2 + 5t) + 5y = 18

8 + 20t+ 5y = 18

5y = 10− 20t

y = 2− 4t

Thus, we have (x, y) = (2 + 5t, 2− 4t) ∀t ∈ Z.Term 2, 2021 UNSW Mathematics Society 80 / 171



Linear Diophantine Equations

(2016, Semester 2) Q1 iii)

Find all integers x and y with

4x+ 5y = 18.

How many of the solutions lie in the positive quadrant?

To figure out how many solutions lie in the positive quadrant, we will
restrict our expressions for x and y to be strictly positive and find the
corresponding values for t.

2 + 5t > 0

t >
−2

5
≥ 0
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Linear Diophantine Equations

(2016, Semester 2) Q1 iii)

Find all integers x and y with

4x+ 5y = 18.

How many of the solutions lie in the positive quadrant?

2− 4t > 0

t <
1

2
≤ 0

Thus, there is only one solution in the positive quadrant at t = 0 which
is (x, y) = (2, 2). (This can also be seen intuitively by looking at the
previous result)
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The Chinese Remainder Theorem

CRT Definition

Suppose n1, n2, ..., nk ∈ N with gcd(ni, nj) = 1 for each i.j with
1 ≤ i < j ≤ k. Then there is a unique solution modulo n = n1n2...nk
to the simultaneous equations

x ≡ a1 (mod n1)

x ≡ a2 (mod n2)

...

x ≡ ak (mod nk)
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The Chinese Remainder Theorem

CRT Algorithm

Assume gcd(ni, nj)− 1, 1 ≤ i < j ≤ k.

i Let n = n1n2...nk.

ii For each i define mi = n/ni and the defined yi solving the
congurence miyi ≡ 1 (mod ni).

iii Compute and output x ≡ a1m1y1 + ...+ akmkyk (mod n).
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4. Powers and roots



Fermat’s Little Theorem

Suppose that p is prime. Then any integer a satisfies the property:

ap ≡ a (mod p).

Additionally, if a is not divisible by p, then a satisfies the property:

ap−1 ≡ 1 (mod p).
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Euler’s ϕ function

Define ϕ(n) to count the number of relatively prime integers smaller
than n.

(Some properties of ϕ)

• If gcd(m,n) = 1, then ϕ(mn) = ϕ(m) · ϕ(n).

• Let p1, p2, . . . , pk be the unique prime factors of n. Then

ϕ(n) = n

k∏
i=1

(
1− 1

pi

)
.

• If n is prime, then ϕ(n) = n− 1.
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(2021, Term 2 – Sample Test 2C) Q2 iii)

Let p be an odd prime. Find another integer n such that ϕ(n) = ϕ(p).

Since p is an odd prime, then every integer smaller than p is relatively
prime to p. In other words, gcd(m, p) = 1 for every 1 ≤ m < p. So if
m < p, then we have that

ϕ(m · p) = ϕ(m)ϕ(p).

We now use the fact that 2 is prime. But since 2 is prime, then
ϕ(2) = 2− 1 = 1. In other words, we have

ϕ(2p) = ϕ(2)ϕ(p) = ϕ(p).

It suffices to choose n = 2p.
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(2021, Term 2 – Test 2) Q2 iii)

Show that there are infinitely many positive integers n such that
10 | ϕ(n).

Method 1: We claim that n = 5α · 2β for α, β ≥ 2 satisfy the
condition. By its alternative definition, we have that

ϕ(n) = n
∏
p|n

(
1− 1

p

)
= 5α · 2β

(
1− 1

5

)(
1− 1

2

)

= 5α · 2β
(

4

5

)(
1

2

)
= 5α−1 · 2β−1 · 4 = 10

(
5α−2 · 2β−2 · 4

)
.

As long as α, β ≥ 2, then 5α−2 · 2β−2 · 4 is an integer which implies that
10 divides ϕ(n). Since α and β can be made arbitrarily, there are
infinitely many n’s to choose.
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(2021, Term 2 – Test 2) Q2 iii)

Show that there are infinitely many positive integers n such that
10 | ϕ(n).

Method 2: Since ϕ(11) = 11− 1 = 10, then pick n = 11p where p is a
prime and p 6= 11 since

ϕ(11p) = ϕ(11)ϕ(p) = 10(p− 1).

Since there are infinitely many primes, then there are infinitely many
positive choices for n such that 10 | ϕ(n).
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Euler’s theorem

We begin to generalise Fermat’s Little Theorem.

Euler’s theorem

Let a, n be integers such that gcd(a, n) = 1. Then

aϕ(n) ≡ 1 (mod n).

Fermat’s Little Theorem is realised when n = p is prime since we have

aϕ(p) ≡ 1 (mod p) ⇐⇒ ap−1 ≡ 1 (mod p).

We can use this to greatly reduce the number of computations to find
powers.
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(2021, Term 2 – Test 2) Q2 i)

Use Euler’s theorem to show that 3723 ≡ 37−1 (mod 52).

Since gcd(37, 52) = 1, by Euler’s theorem, 37ϕ(52) ≡ 1 (mod 52). Since
52 = 2× 3× 13, then we have

ϕ(52) = ϕ(6 · 13) = ϕ(6)ϕ(13) = ϕ(2)ϕ(3)ϕ(13) = 24.

Thus,
3724 ≡ 1 (mod 52).

So we have

3723 = 3724−1 = 3724 · 37−1 ≡ 1 · 37−1 (mod 52) ≡ 37−1 (mod 52).
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Primitive roots

Order of an element

The order an element a (in Zn) is the smallest positive integer k such
that ak ≡ 1 (mod n).

Units of Zn
The units of a ring Zn are the elements that have a multiplicative
inverse – these are elements with the property gcd(a, n) = 1.
The set of units Z∗n form a group under multiplication and |Z∗n| = ϕ(n).

A primitive element of Zn is an element whose order is ϕ(n).
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Testing for primitiveness

To check whether a number a is primitive in Zn, compute the
algorithm:

(I) Factor out n− 1 into a product of primes.

(II) For each unique prime qi in the factorisation of n− 1, check that
a(n−1)/qi 6≡ 1 (mod n).

(III) If this is true, then a is a primitive root/element in Zn.
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(2017, Semester 2) Q2 ii)

Let N = 1237. You are given that N − 1 = 22 · 3 · 103 and the following
table of values:

q 2 5 103

2
N−1

q mod N 1236 300 385

3
N−1

q mod N 1 300 768

7
N−1

q mod N 1236 300 635

Which of the numbers 2, 3 and 7 are primitive elements in Z∗1237? Give
brief reasons.

(I) Factor N − 1. They have given us the factorised form:
N − 1 = 22 · 3 · 103.

(II) For each distinct prime qi, check that a
N−1
qi 6≡ 1 mod N . We see

that 3 cannot be a primitive element since 3
N−1

2 ≡ 1 (mod N).
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(2017, Semester 2) Q2 ii)

Let N = 1237. You are given that N − 1 = 22 · 3 · 103 and the following
table of values:

q 2 5 103

2
N−1

q mod N 1236 300 385

3
N−1

q mod N 1 300 768

7
N−1

q mod N 1236 300 635

Which of the numbers 2, 3 and 7 are primitive elements in Z∗1237? Give
brief reasons.

(III) Output: 2 and 7 are primitive elements.
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Classification of primitive roots

We begin to classify the existence of primitive roots in an arbitrary
modulo n ring.

Primitive roots mod n exist if and only if n is in one of the following
forms:

(I) n = 1, 2, or 4;

(II) n = pk for an odd prime p and nonnegative integer k;

(III) n = 2pk for an odd prime p and nonnegative integer k.
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Classification of primitive roots

(2021, Term 2 – Sample Test 2B) Q2 iii)

What is the largest integer n ≤ 57 such that Z∗n has a primitive root?

We look at the possible values of n in one of the forms:

• n = 1, 2, 4;

• n = pk for odd primes p;

• n = 2pk for odd primes p.

The biggest prime smaller than 57 is n = 53. It remains to check values
n = 54, 55, 56, 57. For n = 54, we see that n = 2× 27 = 2 · 33. So
n = 54 also has a primitive root. We see that n = 55 = 5× 11 so Z∗55
will have no primitive roots. For n = 56 = 2× 28, 28 is not a power of
an odd prime so Z∗56 does not have a primitive root. Similarly,
n = 57 = 3× 19 won’t have a primitive root either. So n = 54 is the
largest possible integer.

Term 2, 2021 UNSW Mathematics Society 98 / 171



Optional harder questions

(2018, Semester 2) Q2 iv)

Find all integers n ≥ 1 for which the Euler function ϕ(n) is odd. You
must prove your answer.

Recall that

ϕ(n) = n
∏
p|n

(
1− 1

p

)
.

So any even number bigger than 2 will force ϕ(n) to be even. Also,
since any prime p > 2 is odd, then ϕ(p) = p− 1, they will also be even.
We now look to composite odd integers. Since they are composite, then
they can be written as a product of odd primes (by the Fundamental
Theorem of Arithmetic).
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Write n = pk11 p
k2
2 . . . pkmm , where pi is an odd prime in the factorisation.

Then we have that

ϕ(n) = n

m∏
i=1

(
1− 1

pi

)
= n

m∏
i=1

(
pi − 1

pi

)
= pk1−11 pk2−12 . . . pkm−1m (p1 − 1) (p2 − 1) . . . (pm − 1) .

Since pi is an odd prime, then pi − 1 must be even. So any odd integer
n > 3 will produce an even ϕ(n). The only integers n such that ϕ(n) is
odd is n = 1 (if we define ϕ(1) = 1) and n = 2 since ϕ(2) = 2− 1 = 1.
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(2017, Semester 2) Q2 iii)

Let r be the smallest positive quadratic non-residue modulo p ≥ 3 that
is, the smallest positive integer r for which the congruence x2 ≡ r
(mod p) has no solution. Prove that r is a prime number.
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5. Cryptography and Coding Theory



Cryptography

• Encode messages;

• Decode messages;

• Correct encoded messages.
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Encoding and decoding messages

Idea: Find an encoding and decoding system. If we encode a message
and decode the encoded message, we should receive the same message.

E : x 7→ x7 (mod 26) =⇒ D : x 7→ x7 (mod 26).

We look at two particular cryptographic systems:

• Error-correcting codes,
• RSA.
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Error-correcting codes

Codes that can correct (and detect) errors.

Hamming (7, 4) code

The standard Hamming (7, 4) code uses the following matrix:

H =

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

 .

Start with the original message (a, b, c, d) and encode as
(x, y, a, z, b, c, d).

Information rate:
# bits in original message

# bits in encoded message
=

4

7
.
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Hamming (7, 4) code

When do we have an error?

c is a codeword of Hc if
Hc = 0.

An error occurs if Hc 6= 0.

The result tells us what column the error occurs.
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(2016, Semester 2) Q2 iii)

The standard (7, 4) Hamming code uses the matrix

H =

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

 .

A message (a, b, c, d) is encoded as (x, y, a, z, b, c, d).

(a) What is the information rate of this code?

(b) Using the scheme above, encode (0, 0, 1, 1).

(c) Correct any error and decode (0, 1, 0, 0, 1, 1, 1), assuming at most
once error.
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(2016, Semester 2) Q2 iii)

The standard (7, 4) Hamming code uses the matrix

H =

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

 .

A message (a, b, c, d) is encoded as (x, y, a, z, b, c, d).

(a) What is the information rate of this code?

(b) Using the scheme above, encode (0, 0, 1, 1).

(a) The information rate is
# bits in the original message

# bits in the encoded message
=

4

7
.

(b) The encoded message would look like (x, y, 0, z, 0, 1, 1). We just
need to find x, y, z.
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If c is a codeword, then we require that Hc = 0. This gives us

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1




x
y
0
z
0
1
1


=

 z
y

x+ 1

 .

For this to be a codeword, we require that z = 0, y = 0, x+ 1 = 0.
This gives us: z = y = 0 and x = 1 (since we’re working in modulo 2).
Encode it as

c = (1, 0, 0, 0, 0, 1, 1).
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(2016, Semester 2) Q2 iii)

The standard (7, 4) Hamming code uses the matrix

H =

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

 .

A message (a, b, c, d) is encoded as (x, y, a, z, b, c, d).

(c) Correct any error and decode (0, 1, 0, 0, 1, 1, 1), assuming at most
once error.

To decode it, check to see if Hc = 0.
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We get

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1




0
1
0
0
1
1
1


=

 0 + 0 + 0 + 0 + 1 + 1 + 1
0 + 1 + 0 + 0 + 0 + 1 + 1

0 + 0 + 0 + 0 + 0 + 1 + 0 + 1

 .

Simplifying the expression in modulo 2, we get Hc =

1
1
0

. So there is

an error and the error is in the 6th column. We decode as
(a, b, c, d) = (0, 1, 0, 1).
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(2017, Semester 2) Q2 iv)

The standard (7, 4) Hamming code uses the matrix

H =

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

 .

A message (a, b, c, d) is encoded by c = (x, y, a, z, b, c, d).

(a) Explain how the ith column of H is constructed.

(b) What is the information rate of this code?

(c) Using the scheme above, encode (1, 0, 1, 1).

(d) Some binary message, (a, b, c, d), encoded as in above, is received
as (0, 1, 0, 0, 1, 1, 0). Do you think an error has occurred during the
transmissions? Explain your reasons.
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(2017, Semester 2) Q2 iv)

The standard (7, 4) Hamming code uses the matrix

H =

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

 .

A message (a, b, c, d) is encoded by c = (x, y, a, z, b, c, d).

(a) Explain how the ith column of H is constructed.

(b) What is the information rate of this code?

(a) The ith column of H is simply the binary representation of i with
the third row representing the coefficient of 20, second row
representing the coefficient of 21 and the first row representing the
coefficient of 22.

(b) Original message has length 4 and the encoded message has length
7, so the information rate

I =
4

7
.
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(2017, Semester 2) Q2 iv)

The standard (7, 4) Hamming code uses the matrix

H =

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

 .

A message (a, b, c, d) is encoded by c = (x, y, a, z, b, c, d).

(c) Using the scheme above, encode (1, 0, 1, 1).

(d) Some binary message, (a, b, c, d), encoded as in above, is received
as (0, 1, 0, 0, 1, 1, 0). Do you think an error has occurred during the
transmissions? Explain your reasons.

(c) The encoded word is (x, y, a, z, b, c, d) where (a, b, c, d) = (1, 0, 1, 1).
So we have c = (x, y, 1, z, 0, 1, 1). We solve Hc = 0.
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We have

Hc =

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1




x
y
1
z
0
1
1


=

 z + 1 + 1
y + 1 + 1 + 1
x+ 1 + 1

 .

Remember that we’re working in Z2 and we want Hc = 0. Hence,z + 2
y + 3
x+ 2

 =

 z
y + 1
x

 =

0
0
0

 ,

and so z = 0, y = 1, x = 0 and the encoded message is
c = (0, 1, 1, 0, 0, 1, 1).

Term 2, 2021 UNSW Mathematics Society 115 / 171



(d) We need to check to see whether (0, 1, 0, 0, 1, 1, 0) has an error. To
do this, we check that

Hc = 0.

Directly computing, we see that

Hc =

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1




0
1
0
0
1
1
0


=

1 + 1
1 + 1

1

 =

0
0
1

 .

Hence, we see that Hc 6= 0. This tells us that there is an error. In
particular, there is an error in the first value.
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RSA code

RSA Code

Input: A message of length m which has no more than n digits.
Algorithm:

(I) Choose primes p, q large enough such that N = pq > 10n.

(II) (Encoding) Compute ϕ(N) and choose a power s such that
gcd(s, ϕ(N)) = 1.

(III) (Decoding) Find t such that

st ≡ 1 (mod ϕ(N)).

E : m 7→ ms (mod N),

D : m 7→ mt (mod N).
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(2017, Semester 2) Q2 i)

(a) Compute ϕ(323) (note that 323 = 17 · 19).

(b) Does the function m→ m10 mod 323, sending a message m to the
residue m10 (mod 323) give a valid RSA encryption?

(a) Since 323 = 17 · 19, then ϕ(323) = ϕ(17 · 19) = 16 · 18 = 288.

(b) Suitable encoding powers s are chosen such that gcd(s, ϕ(N)) = 1
where N = 323 in this case. So we are trying to see whether
gcd(10, 288) = 1. But since they are both even, they both have a 2
in common, so we have gcd(10, 288) > 1 and thus, 10 is not a
suitable power.
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(2016, Semester 2) Q2 i)

(a) Define Euler’s phi function and find ϕ(143).

(b) If an RSA code encodes messages with m 7→ m7 mod 143, what is
the decoding function?

(a) ϕ(n) counts the number of integers smaller than n that are
relatively prime to n. Since 143 = 11× 13, then we have

ϕ(143) = ϕ(11 · 13) = ϕ(11)ϕ(13) = 120.

(b) To decode, we find x such that 7x ≡ 1 (mod ϕ(143)) ≡ 1
(mod 120). To find x, we find the inverse of 7 in modulo 120. The
inverse of 7 is x = 103. So an appropriate decoding function is

D : m 7→ m103 (mod 143).
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(2019, Term 2) Q2 iii)

(i) Compute the Euler function ϕ(323) (note that 323 = 17 · 19).

(ii) Find the smallest possible RSA exponent e so that encoding
messages with m→ me mod 323 gives a valid RSA encryption.
What is the decoding function?

(iii) For the above choice of encoding, what is the decoding function
which recovers the original message?

(i) Since 323 = 17 · 19, then ϕ(323) = ϕ(17 · 19) = 16 · 18 = 288.

(ii) Suitable values for the exponent are values e such that
gcd(e, ϕ(323)) = 1. To this end, we consider the prime
factorisation of 288 which is 288 = 25 · 32
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(2019, Term 2) Q2 iv)

An RSA code has been constructed using the modulus M = pq which
is a product of two primes p and q of the form p = 2k + 3 and
q = 2n + 1 with positive integers k and n. Design a strategy to use this
information to break this scheme. Explain it on the example
M = 33667.

Key idea: We need to find a way to be able to find p and q using only
the information that the public would know – the value of M . Since we
know that p = 2k + 3 and q = 2n + 1, then

M = (2k+3)(2n+1) = 2k+n+2k+3 ·2n+3 = 2k+n+2k+2n+1 +2n+3,

in binary form. So if we know the binary expansion of M , then we can
find the values of k and n for which we can find p and q and
subsequently, crack the code.
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We shall use M = 33667 as an example. Since we know that M = pq,
then we know that M = 33667 = 215 + 29 + 28 + 27 + 3. This means
that

2k+n + 2k + 2n+1 + 2n = 215 + 29 + 28 + 27.

This tells us that k + n = 15. We can deduce that either n = 8 or
n = 7. If n = 7, then n+ 1 = 8 and k = 9. But then k + n 6= 15. If
n = 8, then n+ 1 = 9 and k = 7. And indeed, we have that
k + n = 7 + 8 = 15. Hence, we have that p = 2k + 3 = 27 + 3 and
q = 2n + 1 = 28 + 1 and that cracks the code since we now know the
value of p and q.
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6. Polynomials



Polynomial rings

We shall make some analogies.

Zn R[x]

Elements x mod n Polynomials with coefficients in R
Identity x = 0 (additive) p(x) = 0 (additive)

x = 1 (multiplicative) p(x) = 1 (multiplicative)

Polynomial rings work in almost the same fashion as integer rings from
Chapter 1!
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Greatest common divisor

The greatest common divisor between two polynomials (say f(x)
and g(x)) is a polynomial that factors into both parts (common
divisor) and any other factor polynomial q(x) is a factor of the gcd. In
other words,

Let f(x), g(x) ∈ R[x] (not zero). The polynomial d(x) is called the
greatest common divisor if:

• d(x) | f(x) and d(x) | g(x) (common divisor),

• If q(x) | f(x) and q(x) | g(x), then q(x) | d(x) (greatest).

If d(x) is the greatest common divisor, then so is λ · d(x). This means
that the greatest common divisor of polynomials is not unique (unlike
the case of integers)!
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(2016, Semester 2) Q2 iv)

Find a quadratic polynomial and a cubic polynomial in Z[x] whose
greatest common divisor is x (and explain why the gcd is x).

We will construct these two polynomials. Let f(x) be the quadratic
polynomial and g(x) be the cubic polynomial. Since the greatest
common divisor is x, then clearly x | f(x) and x | g(x). So we can write
f(x) = x(ax+ b) and g(x) = x(cx2 + dx+ e). For there to be no more
common factors, ax+ b - cx2 + dx+ e. There are infinitely many
choices we can pick but the easiest choice is a = 1, b = 1, c = 1, d = 1,
e = 1. Thus, we obtain the polynomials

f(x) = x2 + x, g(x) = x3 + x2 + x,

and this construction guarantees that gcd(f(x), g(x)) = x. These
polynomials are also in Z[x] since the coefficients are integers.
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(2017, Semester 2) Q2 v)

Find a polynomial of degree 4 in Z[x] whose greatest common divisor
with the polynomial x2(x+ 1) is x(x+ 1) and prove your answer.

We will tackle this similar to how we tackled the previous question! We
shall construct the polynomial. Let f(x) be the degree 4 polynomial in
Z[x]. Since x(x+ 1) is the greatest common divisor, then clearly
x(x+ 1) | f(x). So we can write f(x) = x(x+ 1)(ax2 + bx+ c). Since
x(x+ 1) is the greatest common factor, then we require that
x - ax2 + bx+ c. Let a = 1, b = 0, c = 1. Then we have

f(x) = x(x+ 1)(x2 + 1) = x4 + x3 + x2 + x.
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Irreducibility

Irreducibility in F [x]

A polynomial p(x) in F [x] is said to be irreducible if we cannot factor
p(x) into a product of polynomials of smaller degrees in F [x].

A way to check whether a polynomial is irreducible in F [x] is to use
Eisenstein’s criterion.

Eisenstein’s criterion

Consider some polynomial

p(x) =

n∑
i=0

aix
i.

Suppose there is a prime number p which divides ai for i 6= n and p2

does not divide a0. If there is, then p(x) is said to be irreducible.
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Determining whether a polynomial is irreducible

Primitivity of polynomials

A polynomial is said to be primitive if the greatest common divisor of
the coefficients is 1.

(Technique 1) If p(x) is primitive of degree n and it is reducible,
then it has a factor of degree n/2 or less.

(Technique 2) If p ∈ Z[x] and p(r/s) = 0 for integers r, s with
gcd(r, s) = 1, then s | an and r | a0.
(Technique 3) If p(x) is irreducible, then so is q(x) = p(x+ a)
(and vice versa).

Term 2, 2021 UNSW Mathematics Society 129 / 171



Polynomial fields

Much like integers, we can define the notion of a polynomial field. In
the integers case, Zp is a field if and only if p is prime – but a prime
number is just a number that is irreducible since it cannot be written
as a product of two integers smaller than p. This works in the same
vein with polynomials.

Polynomial field

We say that F [x]/〈f(x)〉 is a polynomial field if and only if f(x) is
irreducible in F [x].

Here, we say F [x]/〈f(x)〉 to refer to the polynomial ring modulo f(x).

Field of a elements

If F = Zn[x]/f(x) is a field (i.e. f(x) is irreducible in F [x]), then it has
a = ndeg(f(x)) elements.
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(2019, Term 2) Q3 iii)

Show that f(x) = x3 + x+ 1 is irreducible in Z2[x] and explain why
F = Z2[x]/f(x) is a field of 8 elements.

We show that f(x) is irreducible in Z2[x]. Assume that f(x) is
reducible. Since f(x) is primitive, then we can directly apply technique
1. This means that there is a linear factor of f(x). The only possible
linear factors in Z2[x] are {x, x+ 1}. But we see that f(0) = 1 6= 0 and
f(−1) = (−1)3(−1) + 1 = −1 6= 0. Thus, f(x) has no linear factors
which means it has no factors. In other words, f(x) is irreducible
(think about why this implies it has no quadratic factors either).
Since f(x) is irreducible in Z2[x], then F = Z2[x]/f(x) is a field. The
elements in F are polynomials of degree 2 or less with coefficients in Z2.
So the elements in F are

F = {0, 1, x, x+ 1, x2, x2 + 1, x2 + x, x2 + x+ 1}.
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(2018, Semester 2) Q3 ii)

Let f(x) = x3 + x2 + 1 in Z2[x].
Prove that F = Z2[x]/f(x) is a field and find the number of elements in
F.

To prove that F is a field, we show that f(x) is irreducible in Z2[x].
Suppose that f(x) was reducible. Since f(x) is primitive, we can apply
technique 1. This means that f(x) has linear factors. The only possible
linear factors are {x, x+ 1} and it’s easy to check that none of them
factor into f(x). This implies that f(x) has no linear factors which
imply that f(x) also has no quadratic factors. Thus, f(x) is irreducible.
This implies that F = Z2[x]/f(x) is a field with 2deg(f(x)) = 23 = 8
elements.
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(2016, Semester 2) Q3 i) and ii)

Let m1(x) = x4 + x+ 1 in Z2[x], F = Z2[x]/〈m1(x)〉. Also let
m3(x) = x4 + x3 + x2 + x+ 1.

(i) Are m1(x) and m3(x) irreducible? Prove your answer.

(ii) State the number of elements in F .

Suppose that m1(x) is reducible. Since m1(x) is primitive, then apply
technique 1. This tells us that m1(x) has a factor of degree 1 or 2. The
possible linear factors are {x, x+ 1}. We can see that
m1(x) = x(x3 + 1) + 1 and m1(x) = x(x+ 1)(x2 + x+ 1) + 1. So none
of the linear terms are factors. So there must be quadratic factors. The
possible quadratic factors are {x2, x2 + 1, x2 + x, x2 + x+ 1}. From the
previous working, we can see that x2 + x+ 1 cannot be a factor nor can
x2 + x. So the possible factors must be either x2 or x2 + 1 (or both).
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We have a few options.

x2 is the only factor. Then we have that

m1(x) = (x2)2 = x4 6= x4 + x+ 1.

So x2 cannot be the only factor.

x2 + 1 is the only factor. Then we have that

m1(x) = (x2 + 1)2 = x4 + 2x2 + 1 = x4 + 1 6= x4 + x+ 1.

So x2 + 1 cannot be the only factor.

x2 and x2 + 1 are the factors of m1(x). Then we have that

m1(x) = x2(x2 + 1) = x4 + x2 6= x4 + x+ 1.

So neither of these cases work which implies that there are no
quadratic factors. But that contradicts the fact that m1(x) is
reducible and primitive. Thus, m1(x) must be irreducible!
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We now determine whether m3(x) is irreducible. Recall that

m3(x) = x4 + x3 + x2 + x+ 1.

Now, since m3(x) is a geometric series, then we can write the
expression as

m3(x) =
x5 − 1

x− 1
.

Set g(x) = m3(x+ 1). Then

g(x) =
(x+ 1)5 − 1

(x+ 1)− 1
=

(
1 +

(
5
1

)
x+

(
5
2

)
x2 +

(
5
3

)
x3 +

(
5
4

)
x4 +

(
5
5

)
x5
)
− 1

x

=

(
5

1

)
+

(
5

2

)
x+

(
5

3

)
x2 +

(
5

4

)
x3 +

(
5

5

)
x4

= 5 + 10x+ 10x2 + 5x3 + x4.

Apply Eisenstein’s criterion with p = 5. We can see that p divides
every coefficient except for the leading coefficient and p2 does not
divide the constant. Hence, by Eisenstein’s criterion, m3(x) is
irreducible.

Term 2, 2021 UNSW Mathematics Society 135 / 171



(2016, Semester 2) Q3 ii)

(ii) Let m1(x) = x4 + x+ 1 in Z2[x], F = Z2[x]/〈m1(x)〉.
State the number of elements in F .

Since F is a field, then there are 24 = 16 elements in F .
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Optional harder problems

(MATH3711 – 2021, Term 1) Q2 ii)

Find all c ∈ Z3 such that Z3[x]/(x3 + cx2 + 1) is a field.

Remember that Zn[x]/f(x) is a field if and only if f(x) is irreducible in
Zn[x]. Thus, we aim to find all possible c ∈ Z3 such that x3 + cx2 + 1 is
irreducible in Z3. Since Z3 is relatively small, we just need to check
whether which value of c makes x3 + cx2 + 1 irreducible. Obviously, we
can write x3 + 1 = (x+ 1)(x2 − x+ 1) and so c = 0 does not make
x3 + cx2 + 1 irreducible. For c = 1, we have f(x) = x3 + x2 + 1. If
x = 1, then we have that f(1) = 1 + 1 + 1 = 0 in Z3. Hence x+ 2 is a
factor and f(x) = (x+ 2)(x2 + 2x+ 2). For c = 2, we get that
f(x) = x3 + 2x2 + 1. If f(x) is reducible, then it has linear factors.
However, checking f(0), f(1) and f(2) verifies that there are no linear
factors. This implies that f(x) is irreducible. Hence, the only possible
value of c that makes Z3[x]/(x3 + cx2 + 1) a field is c = 2.
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7. Finite fields and BCH codes



Finite fields

We saw an important result in the previous chapter:

m(x) ∈ F [x] is irreducible ⇐⇒ F [x]/〈m(x)〉 is a field.

We use this idea to construct finite fields.

(Moore’s theorem) Construction of finite fields

Every finite field is isomorphic to Zp[x]/〈m(x)〉.

Finite fields can also interchangably be referred to as Galois fields,
denoted by GF(q) or Fq.
q denotes the number of elements in the finite field: q = pdeg(m(x)).

Fq
∼
= Zp[x]/〈m(x)〉.
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(Theorem) Order of Finite fields

Suppose that F is a finite field. Then |F | = q = pk for some prime p.
The prime p is called the characteristic of F .

Z2 is a finite field of characteristic 2;

Z4 is not a finite field; however, a finite field of 4 elements exist
with characteristic 2.

Z13 is a finite field of characteristic 13.

(Theorem) Order of elements in finite fields

If Fq is a field of q elements, then F∗q has q − 1 elements (we disregard
the 0 element). Then the order of an element in F∗q divides q − 1.
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(2020, Term 2) Q2 iv)

Which numbers in the following sequence 2, 7, 9, 12, 16, 19 can be
cardinalities of finite fields? Give reasons.

Every finite field is isomorphic to Zp[x]/〈f(x)〉 where f(x) is an
irreducible polynomial in Zp. Thus, the only possible cardinalities of
finite fields are powers of primes. So the possible cardinalities are

2 = 21,

7 = 71,

9 = 32,

16 = 42 = 24,

19 = 191.
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(2018, Semester 2) Q3 iii)

Let f(x) = x3 + x2 + 1 in Z2[x].

(i) Prove that F = Z2[x]/f(x) is a field and find the number of
elements in F.

(ii) What are the possible orders of elements in F∗?

(i) Skipped. We covered this earlier.

(ii) Since F is a field of 23 = 8 elements, then F∗ has 8− 1 = 7
elements. The order of the elements must divide 7. So the possible
orders are either 1 or 7.

We look at elements with order 7 (more specifically, order q − 1) more
closely.
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Primitive element and minimal polynomials

Primitive element

An element α ∈ Fq is a primitive element of Fq if the order of α is
q − 1.

Minimal polynomial

Let α ∈ Fq. The minimal polynomial m(x) of α is the monic
polynomial of smallest degree such that m(α) = 0.

If m(x) is irreducible and m(α) = 0, then m(x) is the minimal
polynomial of α.
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(2021, Term 2) Tutorial Problem 8, Q6

Let α be a root of x3 + 2x+ 1 and Z3(α) = Z3[x]/〈x3 + 2x+ 1〉.
Is α a primitive element of Z3(α)? What are the possibilities for the
orders of the elements of Z3(α)?

Since α is a root of x3 + 2x+ 1, this means that α3 + 2α+ 1 = 0.
Equivalently, this implies that

α3 = −2α− 1 ⇐⇒ α3 = α+ 2.

We can now begin to find powers of α. Since the orders of elements in
Z3(α) must divide the order of Z3(α), we need to find the order of
Z3(α) first. But this is a finite field of order 33 = 27. Hence, orders of
elements in Z3(α) must divide q = 27− 1 = 26. We just need check α2

and α13. Clearly α2 is just α2.
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We see that

α13 =
(
α3
)4 · α = (α+ 2)4 · α

=
(
α4 + 8α3 + 24α2 + 32α+ 16

)
· α

= ((α+ 2) · α+ 2(α+ 2) + 2α+ 1) · α
=
(
α2 + 2α+ 2α+ 4 + 2α+ 1

)
· α

=
(
α2 + 6α+ 5

)
· α

=
(
α2 + 2

)
· α

= α3 + 2α = (α+ 2) + 2α = 2.

Since α13 6= 1, then 13 is not the order of α. This leaves the only power
26. We can check that it is indeed 1 by noticing that

α26 =
(
α13
)2

= 22 = 4 = 1.

Thus, α is a primitive root. The possible orders are: 2, 13, 26.
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(2021, Term 2) Tutorial Problem 8, Q13

Suppose α is a root of x3 + x+ 1. Find the minimal polynomial in
Z2[x] of α2 + α and α2 + α+ 1.

Recall that the minimal polynomial is a monic polynomial of smallest
degree for which β is a root. Since α is a root of f(x) = x3 + x+ 1,
then we have that

f(α) = 0 ⇐⇒ α3 + α+ 1 = 0 ⇐⇒ α3 = α+ 1.

We see that α4 = α2 + α and α5 = α2 + α+ 1 Let β = α4 and γ = α5.
We now find powers of β and γ for which g(β) = 0 and h(γ). We shall
start with β. To do this, we construct a table of powers for α.
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α0 1 α4 α2 + α
α1 α α5 α2 + α+ 1
α2 α2 α6 α2 + 1
α3 α+ 1 α7 1

We now find powers of α4 for which g(α4) = 0. This gives us the table
of powers for β as

β0 1
β1 = α4 α2 + α
β2 = α8 α
β3 = α12 α2 + α+ 1

We see that β3 + β + β0 = (α2 + α+ 1) + (α2 + α) + 1 = 0. So the
minimal polynomial for β = α2 + α is the polynomial

g(x) = x3 + x+ 1.
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Similarly, we construct the table of powers for γ = α5 to get

γ0 1
γ1 = α5 α2 + α+ 1
γ2 = α10 α+ 1
γ3 = α15 α

We see that γ3 + γ2 + 1 = α+ (α+ 1) + 1 = 0. So the minimal
polynomial for γ = α2 + α+ 1 is the polynomial

h(x) = x3 + x2 + 1.
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(2017, Semester 2) Q3

Let f(x) = x3 + x2 + 1 in Z2[x].

(i) Show that f(x) is irreducible and explain why F = Z2[x]/〈f(x)〉 is
a field.

(ii) Find the number of elements in F.

(iii) Let α = x (mod f(x)) be the image of x in F. Evaluate

(a) (1 + α)−1;
(b) all powers αm with 3 ≤ m ≤ 7;
(c) (1 + α+ α2)/(1 + α).

(iv) (a) Use the table computed in Question 3 iii b) to decide whether
α2 + 1 is a primitive element of F.

(b) Use the table to compute f(α3).
(c) What is the value of f(α2)?
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(2017, Semester 2) Q3 i)

Let f(x) = x3 + x2 + 1 in Z2[x].
Show that f(x) is irreducible and explain why F = Z2[x]/〈f(x)〉 is a
field.

If f(x) was reducible, then it would have a linear factor. However, we
see that f(0) = f(1) = 1. So there are no linear factors which imply
there are no quadratic factors either. Hence, f(x) is irreducible in
Z2[x].
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(2017, Semester 2) Q3 ii)

Let f(x) = x3 + x2 + 1 in Z2[x].
Find the number of elements in F = Z2[x]/〈f(x)〉.

There are 23 = 8 elements in F.
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(2017, Semester 2) Q3 iii)

Let f(x) = x3 + x2 + 1 in Z2[x].
Let α = x (mod f(x)) be the image of x in F. Evaluate

(a) (1 + α)−1;

(b) all powers αm with 3 ≤ m ≤ 7;

(c) (1 + α+ α2)/(1 + α).

(a) We want to find the expression in which a(1 + α) = 1 in Z2.
To do this, we use the fact that f(x) = x2(x+ 1) + 1. Since α = x
(mod f(x)), then f(α) = 0. In other words, we have

f(α) = α2(α+ 1) + 1 = 0 ⇐⇒ α2(α+ 1) = 1.

This means that the inverse of α+ 1 is α2.

(b) We shall set up the table of powers.
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Since α3 + α2 + 1 = 0, we also have α3 = α2 + 1 in Z2. This creates the
table.

α3 α2 + 1
α4 α2 + α+ 1
α5 α+ 1
α6 α2 + α
α7 1

(c) By the previous table, we have

1 + α+ α2

1 + α
=
α4

α5
= α−1 = α6.
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(2017, Semester 2) Q3 iv)

Let f(x) = x3 + x2 + 1 in Z2[x].

(a) Use the table to decide whether α2 + 1 is a primitive element of
F = Z2[x]/〈f(x)〉.

(b) Use the table to compute f(α3).

(c) What is the value of f(α2)?

(a) Let β = α3. We need to see whether β has order 7. We can either
do this manually by checking βk = α3k for k = 1, 2, . . . , 7 or
noticing that the order of β must divide 7. So it suffices to check
k = 1. Since β1 = α3 6= 1, then we can immediately deduce that
α3 = α2 + 1 is a primitive element.

(b)

f(α3) =
(
α3
)3

+
(
α3
)2

+ 1 = α9 +α6 + 1 = α2 + (α2 +α) + 1 = α5.
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(c)

f(α2) =
(
α2
)3

+
(
α2
)2

+ 1

= α6 + α4 + 1

= (α2 + α) + (α2 + α+ 1) + 1

= 0.

This tells us that the minimal polynomial of α2 is the same as the
minimal polynomial of α!
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BCH Codes

We now move on to the last topic of the course (and the very reason
why we studied finite fields in the first place!) – BCH codes!

Bose-Chaudhuri-Hocquenghem (BCH) codes

These are more general codes that uses polynomials for encoding and
decoding instead of matrices! They can be used to correct multiple
errors – though, we only solve up to 2 corrections!

Term 2, 2021 UNSW Mathematics Society 156 / 171



Encoding BCH codes

Given a field Zp[x]/m(x), we want to encode a message.

(General strategy)

• Construct CI(x) by taking the values in the message as coefficients
of the polynomial.

• Construct C(x) = CI(x) +D(x) where D(x) is the polynomial
found such that m(x) | C(x).

• Encode using the coefficients of CI(x) and D(x).

Term 2, 2021 UNSW Mathematics Society 157 / 171



(2017, Semester) Q3 v)

Let f(x) = x3 + x2 + 1 in Z2[x].
A BCH code is obtained from F = Z2[x]/〈f(x)〉 by replacing a
quadruple (a6, a5, a4, a3) of elements of Z2 by (a6, a5, a4, a3, a2, a1, a0)
so that the polynomial

a6x
6 + a5x

5 + a4x
4 + a3x

3 + a2x
2 + a1x+ a0

is divisible by f(x).
Encode (1101).

Construct CI(x) = x6 + x5 + x3. Construct
C(x) = CI(x) +D(x) = x6 + x5 + x3 + a2x

2 + a1x+ a0 such that
f(x) | C(x).
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This means that C(x) = f(x)q(x) where q(x) is some degree three
polynomial. Observe that CI(x) = C(x) + a2x

2 + a1x+ a0. So we can
retrieve the unknown coefficients on long division of CI(x) by f(x). We
see that

CI(x) = x6 + x5 + x3 = x3(x3 + x2 + 1).

Therefore, D(x) = a2x
2 + a1x+ a0 is the remainder on division. We

force a2 = a1 = a0 = 0. So we encode the message as

(1, 1, 0, 1) 7→ (1, 1, 0, 1, 0, 0, 0)
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Decoding BCH codes – single error

Given a field Zp[x]/m(x), we want to decode a message.

(General strategy)

(I) Construct R(x) by taking the message values as coefficients of the
polynomial.

(II) Compute R(α) where α is the primitive root of m(x).

(III) If R(α) = 0, then no error has occurred. Otherwise, there is an
error at exactly the αi (i-th) position.
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(2021, Term 2) Tutorial Problem 9, Q1

Set m(x) = x3 + x2 + 1 ∈ Z2[x]. A single error correcting BCH code is
constructed over GF (8) with primitive element α.
Find the error and decode [1, 1, 0, 1, 1, 0, 1].

Begin by constructing the polynomial representation of the message

R(x) = x6 + x5 + x3 + x2 + 1.

Then, for the primitive root α, we compute R(α). This gives us

R(α) = α6 + α5 + α3 + α2 + 1.

Since α is the root of m(x), then we need to construct the table of
powers.
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Since m(α) = 0, we have

α3 + α2 + 1 = 0 ⇐⇒ α3 = α2 + 1.

α0 1
α1 α
α2 α2

α3 α2 + 1
α4 α2 + α+ 1
α5 α+ 1
α6 α2 + α
α7 1

Then:

R(α) = α6 + α5 + α3 + α2 + 1

= α2 + α+ α+ 1 + α2 + 1 + α2 + 1

= α2 + 1 = α3.
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This means there’s an error in the third coefficient. So the correct
message should be [1, 1, 0, 0, 1, 0, 1] which decodes by taking the first
four digits: [1, 1, 0, 0].
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BCH Codes – correct two errors

We need to extend the code to be able to correct at most two errors.

Correcting two errors

To correct two errors, we need to construct a polynomial that contains
two primitive roots: α and αj for some power j.
To find the polynomial, start with a polynomial m1(x) of which we
know that α is a primitive root of (this is usually given to us). Then
find another minimal polynomial m2(x) with primitive root αj for
some power j.
The resulting polynomial is m(x) = m1(x) ·m2(x).
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Encoding BCH codes – two errors

(General strategy)

Exactly the same as the one error case; construct CI(x) and
C(x) = CI(x) +D(x) such that m(x) | C(x).
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Decoding BCH codes – two errors

(General strategy)

Construct R(x) and find R(α). If R(α) = 0, then there is no error.
Otherwise, we have at least one error. Compute R(α3). If R(α) = αi

and R(α3) = α3i = R(α)3, then there is one error exactly at the i-th
location. Otherwise, if R(α) = αi and R(α3) 6= R(α)3, then there are
two errors.
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Let m1(x) = x4 + x+ 1 ∈ Z2[x] and let m3(x) = x4 + x3 + x2 + x+ 1.
An error correcting BCH code is obtained from F = Z2[x]/〈m1(x)〉 by
replacing a message (a14, a13, . . . , a8) by the coefficients of a polynomial
C(x) ∈ Z2[x] where

C(x) = CI(x) + r(x)

with CI(x) = a14x
14 + a13x

13 + · · ·+ a8x
8

and r(x) = CI(x) (mod m(x)),

where m(x) = m1(x)m3(x) = x8 + x7 + x6 + x4 + 1.

(a) Encode the message (1, 1, 0, 0, 0, 1, 0) using the BCH code above.

(b) For each of the following received messages, find out how many
errors it contains (assuming at most 2 errors). If there is one error,
then locate and correct the error and decode the message. If there
are two errors, do NOT try to locate or correct them.

(A) (0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1)
(B) (1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0).
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(a) Encode (1, 1, 0, 0, 0, 1, 0). Construct CI(x) = x14 + x13 + x9. To
find r(x), we need to find CI(x) (mod m(x)). We can do this
using long division to get

CI(x) = (x6+x4+x3+x2+x+1)m(x)+(x7+x6+x5+x3+x2+x+1).

So we encode it as

(1, 1, 0, 0, 0, 1, 0) 7→ (1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1).
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(b) To decode, we find R(x), find R(α) and compute R(α3).

(A) Decode (0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1). Construct

R(x) = x11 + x10 + x9 + x6 + x4 + x3 + 1.

Find R(α) where α is the primitive root of m1(x). Since
m1(x) = x4 + x+ 1, then we have α4 = α+ 1.
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We have the table of powers:

α0 1 α5 α2 + α α10 α2 + α+ 1
α1 α α6 α3 + α2 α11 α3 + α2 + α
α2 α2 α7 α3 + α+ 1 α12 α3 + α2 + α+ 1
α3 α3 α8 α2 + 1 α13 α3 + α2 + 1
α4 α+ 1 α9 α3 + α α14 α3 + 1

Thus, we have

R(α) = α11 + α10 + α9 + α6 + α4 + α3 + 1

= (α3 + α2 + α) + (α2 + α+ 1) + (α3 + α) + (α3 + α2)

+ (α+ 1) + α3 + 1

= α2 + 1 = α8.
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Compute R(α3). We have

R(α3) = (α3)11 + (α3)10 + (α3)9 + (α3)6 + (α3)4 + (α3)3 + 1

= α3 + α0 + α12 + α3 + α12 + α9 + 1

= α9.

Since R(α)3 6= R(α3), we have two errors.

(B) Repeat the same steps as described above.
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