UNSW MATHEMATICS SOCIETY PRESENTS MATH2089/2099/2859

CVEN2002 Revision Seminar

Statistics

T2, 2020

Table of Contents I

- **1** Part I: Random variables
 - Cumulative distribution function
 - Discrete RVs
 - Continuous RVs
 - Expectation
 - Variance and standard deviation
 - Joint distributed RVs
 - Marginal functions
 - Independence of two random variables
 - Covariance and correlation

2 Part II: Sampling distributions and Central Limit Theorem

- Random sampling
- Central Limit Theorem
- Estimators

3 Part III: Confidence intervals

Presented by: Gerald Huang

Table of Contents II

- Sample size determination
- Confidence interval for a proportion
- One-sided confidence intervals for a proportion

Part IV: Hypothesis testing

- Student's t distribution
- Null and Alternative Hypotheses
- Rejection region

5 Part V: Analyses

- Regression Analysis
- Assumptions of linear regression
- Variance Analysis
- Fisher's *F*-distribution

Part I: Random variables

Presented by: Gerald Huang

Random variable

Definition I: Random variable

A random variable is a real-valued function defined over the sample space $X : S \to \mathbb{R}$ and $\omega \to X(\omega)$.

Cumulative distribution function (CDF)

Definition: Cumulative distribution function

A cumulative distribution function of a random variable X is defined, for any real number x, as

$$F(x) = \mathbb{P}(X \leq x).$$

Properties.

• For any real numbers $a \leq b$, we have

$$\mathbb{P}(a < X \leq b) = F(b) - F(a).$$

• It is **nondecreasing**. That is, if $x_1 \le x_2$, then $F(x_1) \le F(x_2)$.

•
$$\lim_{x \to +\infty} F(x) = 1$$
 and $\lim_{x \to -\infty} F(x) = 0$.

Discrete Random Variables

Definition: Discrete Random Variables

A random variable is said to be discrete if it can only assume a finite (or at most countably infinite) number of values.

• Essentially we can count each event!

Characterising a discrete random variable

Discrete random variables can be characterised by their **probability mass function** (pmf), defined by

$$p(x) = \mathbb{P}(X = x).$$

• The sum of ALL elements x in the event A is 1. That is,

$$\sum_{x \in A} p(x) = 1.$$

MATH2089/2859/2099/CVEN2002 Revision Seminar

Presented by: Gerald Huang

7 / 72

Continuous Random Variables

Definition: Continuous Random Variables

A random variable is said to be **continuous** if it is defined over an **uncountable** set of real numbers, usually an intervals.

Characterising a continuous random variable

Continuous random variables can be characterised by their **probability density function** (pdf), defined by f(x).

• The integral over ALL elements x in the event space A is 1. That is,

$$\int_A f(x)\,dx=1.$$

Example

To determine whether $f(x) = e^{-x}$ for x > 0 is a density function, check whether

$$\int_0^\infty e^{-x}\,dx=1.$$

Presented by: Gerald Huang

Expectation of random variables

Expectation of a discrete random variable

The expectation (or mean) of a discrete random variable, denoted $\mathbb{E}(X)$ or μ , is defined by

$$\mu = \mathbb{E}(X) = \sum_{x \in A} x p(x).$$

Expectation of a continuous random variable

The expectation (or mean) of a continuous random variable, denoted $\mathbb{E}(X)$ or μ , is defined by

$$\mu = \mathbb{E}(X) = \int_A xf(x)\,dx.$$

Expectation of random variables (18S2)

Example: (2018 Semester 2, Q3a)

Let X follow the Bernoulli distribution:

$$p(x) = egin{cases} 1-\pi, & ext{if } x=0 \ \pi, & ext{if } x=1 \end{cases}$$

where $0 < \pi < 1$. Show that $\mathbb{E}(X) = \pi$.

Since this is a **discrete** random variable, then the expected value is simply

$$\mathbb{E}(X) = \sum_{x \in X} x p(x) = 0 \times (1 - \pi) + 1 \times \pi = \pi.$$

Properties of the expectation function

• Linearity: For any two constants a and b, we have

$$\mathbb{E}(aX+b)=a\cdot\mathbb{E}(X)+b.$$

• Degenerate: A random variable X is said to be degenerate if

$$\mathbb{E}(b) = b.$$

Presented by: Gerald Huang

Example

If $\mathbb{E}(X) = 2$, then

$$\mathbb{E}(3X+4)=3 imes\mathbb{E}(X)+4=3 imes2+4=10.$$

Example

If
$$\mathbb{E}(3X+4) = 10$$
, then $3\mathbb{E}(X) + 4 = 10 \implies \mathbb{E}(X) = 2$.

Presented by: Gerald Huang

Variance of a random variable

Variance of a random variable

The **variance** of a random variable, denoted by Var(X) or σ^2 , is defined by

$$\operatorname{Var}(X) = \mathbb{E}\left[(X-\mu)^2\right] = \mathbb{E}(X^2) - \mathbb{E}(X)^2.$$

Properties of the variance function

- For any random variable, $Var(X) \ge 0$.
- For any two constants a and b, $Var(aX + b) = a^2 \cdot Var(X)$.
- For any constant b, Var(b) = 0.

Computing the variance

Variance of a discrete random variable The variance of a discrete random variable is defined by

$$\operatorname{Var}(X) = \sum_{x \in A} (x - \mu)^2 p(x) = \underbrace{\left(\sum_{x \in A} x^2 p(x)\right)}_{\mathbb{E}(X^2)} - \underbrace{\left(\sum_{x \in A} x p(x)\right)^2}_{\mathbb{E}(X)^2}$$

Variance of a continuous random variable

The variance of a continuous random variable is defined by

$$\operatorname{Var}(X) = \int_{\mathcal{A}} (x - \mu)^2 f(x) \, dx = \underbrace{\left(\int_{\mathcal{A}} x^2 f(x) \, dx\right)}_{\mathbb{E}(X^2)} - \underbrace{\left(\int_{\mathcal{A}} x f(x) \, dx\right)^2}_{\mathbb{E}(X)^2}$$

MATH2089/2859/2099/CVEN2002 Revision Semina

Example

If $f(x) = e^{-x}$ for x > 0, then the variance can be found by computing the integral

$$Var(X) = \mathbb{E}(X^{2}) - \mathbb{E}(X)^{2} = \int_{0}^{\infty} x^{2} e^{-x} dx - \left(\int_{0}^{\infty} x e^{-x} dx\right)^{2}$$

Presented by: Gerald Huang

MATH2089/2859/2099/CVEN2002 Revision Seminar

Part

Standard deviation

• The **standard deviation** is simply the square root of the variance. That is,

$$SD(X) = \sqrt{Var(X)}.$$

 Since Var(X) ≥ 0, then the standard deviation function will always be defined!

Jointly distributed random variables

• We will now turn towards the two-dimensional case and discuss properties of distributions of *two* random variables!

Joint cumulative distribution function

Definition: Joint cumulative distribution function (discrete) The joint cumulative distribution function of discrete random variables X and Y is given by

 $F_{XY}(x,y) = \mathbb{P}(X \le x, Y \le y), \quad \text{for all } (x,y) \in \mathbb{R} \times \mathbb{R}.$

Definition: Joint cumulative distribution function (continuous)

X and Y are said to be jointly continuous if, for any sets A and B of real numbers, there is a function (the joint probability density of X and Y) $f_{XY}(x, y)$

$$\mathbb{P}(X \in A, Y \in B) = \int_A \int_B f_{XY}(x, y) \, dy \, dx.$$

Joint distribution functions and marginal functions

Discrete

Part I: Random variables

Joint distribution

$$p_{XY}(x,y) = \mathbb{P}(X = x, Y = y).$$

Marginal probabilities

$$p_X(x) = \sum_{y \in S_Y} p_{XY}(x, y).$$
$$p_Y(y) = \sum_{x \in S_X} p_{XY}(x, y).$$

Continuous

Joint distribution

Denoted as $f_{XY}(x, y)$.

Marginal densities

$$f_X(x) = \int_{S_Y} f_{XY}(x, y) \, dy.$$

$$f_Y(y) = \int_{S_X} f_{XY}(x, y) \, dx.$$

Presented by: Gerald Huang

20 / 72

Expectation of a function of two random variables

For any function $g: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, the expectation of g(X, Y) is given by

$$\mathbb{E}(g(X,Y)) =$$

Discrete random variables

Continuous random variables

$$\sum_{x \in S_X} \sum_{y \in S_Y} g(x, y) p_{XY}(x, y)$$

$$\int_{S_X} \int_{S_Y} g(x, y) f_{XY}(x, y) \, dy \, dx$$

Linearity property of the expectation function still holds!

$$\mathbb{E}(aX + bY) = a \cdot \mathbb{E}(X) + b \cdot \mathbb{E}(Y).$$

Example: Table of marginal probabilities

Assume that X is across the top and Y is on the side. Find $\mathbb{P}(X \leq 1, Y \leq 1).$

$$\begin{split} \mathbb{P}(X \leq 1, Y \leq 1) \\ &= \mathbb{P}(X = 0, Y = -1) + \mathbb{P}(X = 0, Y = 1) \\ &+ \mathbb{P}(X = 1, Y = -1) + \mathbb{P}(X = 1, Y = 1) \\ &= 1/8 + 1/8 + 1/8 + 1/4 = 5/8. \end{split}$$

Independent random variables

Definition: Independence of random variables Random variables X and Y are said to be **independent** if, for all $(x, y) \in \mathbb{R} \times \mathbb{R}$,

$$\mathbb{P}(X \leq x, Y \leq y) = \mathbb{P}(X \leq x) \times \mathbb{P}(Y \leq y).$$

Discrete case

Continuous case

$$p_{XY}(x,y) = p_X(x) \times p_Y(y).$$

$$f_{XY}(x,y) = f_X(x) \times f_Y(y).$$

Property of independent random variables If X and Y are **independent**, then for any functions h and g,

 $\mathbb{E}(h(X)g(Y)) = \mathbb{E}(h(X)) \times \mathbb{E}(g(Y)).$

Presented by: Gerald Huang

Example: (MATH2089, 2009S1 Q5c)

Suppose that X and Y are independent standard normal variables. What is the distribution of X + Y?

Since X and Y are independently and normally distributed , then their sum is also normally distributed with

$$Z \sim \mathcal{N}(\mu_X + \mu_Y, \sigma_X^2, \sigma_Y^2) = \mathcal{N}(0, 2).$$

Presented by: Gerald Huang

Covariance of two random variables

Definition: Covariance of two random variables The covariance of two random variables *X* and *Y* is defined as

$$Cov(X, Y) = \mathbb{E}\left[(X - \mathbb{E}(X))(Y - \mathbb{E}(Y))\right].$$

Properties of covariance

- Cov(X, X) = Var(X).
- Symmetric: For any two variables X and Y, Cov(X, Y) = Cov(Y, X).
- **IMPORTANT**: $Cov(X, Y) = \mathbb{E}(XY) \mathbb{E}(X)\mathbb{E}(Y)$.
- Cov(aX + b, cY + d) = ac Cov(X, Y)
- Bilinearity: $Cov(X_1 + X_2, Y_1 + Y_2) = Cov(X_1, Y_1) + Cov(X_1, Y_2) + Cov(X_2, Y_1) + Cov(X_2, Y_2).$

Covariance and independence

 If X and Y are independent, then Cov(X, Y) = 0. But if Cov(X, Y) = 0, then X and Y may or may not be independent!

Remark

X and Y independent
$$\implies$$
 Cov $(X, Y) = 0$.
Cov $(X, Y) = 0 \implies X$ and Y independent.

Presented by: Gerald Huang

Variance of a sum of random variables

Variance of a sum of two random variables For any two random variables *X* and *Y*,

$$\operatorname{Var}(aX + bY) = a^2 \operatorname{Var}(X) + b^2 \operatorname{Var}(Y) + 2ab \operatorname{Cov}(X, Y)$$

• If X and Y are independent, then

$$\operatorname{Var}(aX + bY) = a^2 \operatorname{Var}(X) + b^2 \operatorname{Var}(Y).$$

Presented by: Gerald Huang

Correlation coefficient

Definition: Correlation

The correlation coefficient denoted by ρ is defined as

$$\rho = \frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}}.$$

• We are computing the covariance between the **standardised** versions of *X* and *Y*.

Properties of correlation

- ρ does not have a unit.
- $-1 \le \rho \le 1$.
- Positive ρ means positive linear relationship between X and Y and vice versa for negative!
- The closer $|\rho|$ is to 1, the stronger the relationship!

Presented by: Gerald Huang

Part II: Sampling distributions and Central Limit Theorem

Presented by: Gerald Huang

Independent and identically distributed random variables

A sequence of random variables X_1, X_2, \ldots, X_N are said to be *i.i.d* if

- **1** all X_i 's are independent.
- all X_i's share the same probability distribution (identically distributed).
 - In MATH2089/2859/2099/CVEN2002, we can assume that the random variables in a random sampling are *i.i.d.*

Presented by: Gerald Huang

Central Limit Theorem (aka the Big Man of probability)

What's this? Why do we care?

• CLT asserts:

For **any** random variable, the mean of a large random sample is approximately normal.

• Basically, regardless of its original distribution, the mean will *eventually* follow a normal distribution.

Presented by: Gerald Huang

Standardising the CLT

If we want to standardise the CLT...

Central Limit Theorem

If X_1, X_2, \ldots, X_n is a random sample taken from a population with mean μ and finite variance σ^2 and if \overline{X} is the sample mean, then the limiting distribution of the standard mean follows the **standard** normal distribution. That is,

$$rac{ar{X}-\mu}{\sigma/\sqrt{n}}\stackrel{ extsf{a}}{\sim}\mathcal{N}(0,1).$$

• Note that $\stackrel{a}{\sim}$ means "approximately follows" (as $n \to \infty$).

Presented by: Gerald Huang

Estimators

Definition: Estimators

An **estimator** of θ is a function of the sample

$$\hat{\Theta} = h(X_1, X_2, \ldots, X_n).$$

- An estimator is also a random variable!
- The most natural choice of our estimator is the sample mean! But we can have many other examples of estimators.

•
$$\hat{\Theta}_1 = X_1.$$

• $\hat{\Theta}_2 = \left(\frac{X_1 + X_n}{2}\right).$
• $\hat{\Theta}_3 = \left(\frac{2X_1 + X_n}{2}\right).$

Presented by: Gerald Huang

Properties of estimators

Definition: Unbiased estimator

An estimator $\hat{\Theta}$ of θ is said to be **unbiased** if and only if its mean is equal to θ . That is

$$\mathbb{E}\left(\hat{\Theta}\right) = \theta.$$

• If an estimator is biased, then we can determine the bias by computing the difference

$$\mathsf{Bias}\left(\hat{\Theta}
ight) = \mathbb{E}\left(\hat{\Theta}
ight) - heta.$$

Presented by: Gerald Huang

Properties of estimators

Example: Biased vs unbiased estimators

$$\hat{\Theta}_1 = X_1$$
 is unbiased since $\mathbb{E}(\hat{\Theta}_1) = \theta$.
But $\mathbb{E}(\Theta_3) = \frac{1}{2} [2\mathbb{E}(X_1) + \mathbb{E}(X_n)] = \frac{3}{2}\theta$. So $\hat{\Theta}_3$ is biased.

Presented by: Gerald Huang

Properties of estimators

Definition: Efficient estimator

Goal: An unbiased estimator should have a smaller variance. Such an estimator is said to be *more efficient*.

Example: Efficiency of estimators

$$Var(\Theta_1) = \sigma^2$$
 and $Var(\Theta_2) = \frac{\sigma^2}{2}$. Hence Θ_2 is more efficient than Θ_1 .

Presented by: Gerald Huang
Properties of estimators

Definition: Consistent estimator

Goal: An unbiased estimator should also give better estimations as the number of samples grow larger. That is, an estimator is said to be *consistent* if

$$\operatorname{Var}\left(\hat{\Theta}
ight) o 0 \quad ext{as} \ n o \infty.$$

Presented by: Gerald Huang

Combining all three properties of estimators

We can combine all three of these properties into a single formula that tells us how accurate an estimator is. This is the **mean squared error**, which can be evaluated by computing the following

$$\mathsf{MSE}\left(\hat{\boldsymbol{\Theta}}\right) = \mathsf{Var}\left(\hat{\boldsymbol{\Theta}}\right) + \mathsf{Bias}\left(\hat{\boldsymbol{\Theta}}\right)^2$$

A smaller MSE means a more accurate estimator.

Presented by: Gerald Huang

Part III: Confidence intervals

40 / 72

 Basically... we want to find a suitable range for which our estimation misses the mark with probability α . Note that α is just a percentage here!

Definition: Confidence intervals

A $100(1-\alpha)$ % confidence interval for an unknown parameter θ is a random interval [L, U], where L and U are statistics such that

 $\mathbb{P}(L \leq \theta \leq U) = 1 - \alpha.$

• Here, our random sample has a parameter of θ !

Deriving confidence intervals

- **①** Find a range of values that contains $Z \sim \mathcal{N}(0, 1)$ with probability $1-\alpha$.
- 2 Apply the result of the CLT

$$rac{ar{X}-\mu}{\sigma/\sqrt{n}}\stackrel{\mathsf{a}}{\sim}\mathcal{N}(0,1).$$

Solve for μ for which you have a $100(1-\alpha)\%$ confidence interval for μ to be

$$\left[\bar{x} - z_{1-\alpha/2}\frac{\sigma}{\sqrt{n}}, \bar{x} + z_{1-\alpha/2}\frac{\sigma}{\sqrt{n}}\right]$$

41 / 72

Remark

If the data is exactly normally distributed, then the confidence intervals are exact!

Remark

The length of the interval measures how precise estimation has been! The shorter, the more precise!

Remark

Confidence intervals don't have to be symmetric! In most cases, they aren't.

Example: (MATH2089, 2018 S2 Q3bi)

In August this year, Roy Morgan Research published a poll on Rugby viewership of New Zealanders. The poll, of 6,422 randomly selected New Zealanders, found that 43.6% of them watch Rugby on the television.

Find a 95% confidence interval for the true proportion of New Zealanders who watch Rugby on the television.

Step 1.

Determine what the population proportion mean is.

$$\hat{p} = 0.436$$
 so $1 - \hat{p} = 0.564$.

So $SE^2 = \frac{0.436 \times 0.564}{6422} = 0.00003829$. So SE = 0.006187962. Hence the two sided confidence interval is

$$\left[\bar{x} - z_{1-0.95/2} \times 0.006187962, \bar{x} + z_{1-0.95/2} \times 0.006187962 \right]$$

Sample size determination

Margin of error

Given a pre-specified value *e* such that $|\bar{x} - \mu| < e$, the sample size determined is given by

$$e = z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} \implies n = \left(\frac{z_{1-\alpha/2}\sigma}{e}\right)^2$$

Presented by: Gerald Huang

44 / 72

Confidence interval for a proportion

• We made some inferences about the population mean μ in the previous slides; let's move onto a population proportion π .

Sample proportion estimator

A useful estimator of the proportion is the sample proportion

$$\hat{P} = \frac{X}{n}$$

for some Binomial random variable X such that $X \sim Bin(n, \pi)$.

Sample proportion estimate

An estimate of
$$\pi$$
 is simply $\hat{p} = \frac{x}{n}$

Sampling distribution of \hat{P}

Applying the Central Limit Theorem to \hat{P} , we obtain the result

$$rac{\hat{P}-\pi}{\sqrt{\pi(1-\pi)/n}}\stackrel{ extsf{a}}{\sim}\mathcal{N}(0,1).$$

Additionally, we can also say that

$$rac{\hat{P}-\pi}{\sqrt{\hat{P}(1-\hat{P})/n}}\stackrel{a}{\sim}\mathcal{N}(0,1).$$

Deriving confidence intervals

- Find a range of values that contains $Z \sim \mathcal{N}(0,1)$ with probability $1-\alpha$.
- 2 Apply the result of the CLT

$$rac{\hat{P}-\pi_0}{\sqrt{\pi(1-\pi)/n}}\stackrel{ extsf{a}}{\sim}\mathcal{N}(0,1).$$

Solve for π for which you have a $100(1 - \alpha)\%$ confidence interval for π to be

$$\left[\hat{p}-z_{1-\alpha/2}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}},\hat{p}+z_{1-\alpha/2}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right]$$

Presented by: Gerald Huang

One-sided confidence intervals

We can also find one-sided large-sample confidence intervals for the proportion π by finding

$$\left[0, \hat{p} + z_{1-\alpha} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right] \quad \text{and} \quad \left[\hat{p} - z_{1-\alpha} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, 1\right].$$

Part IV: Hypothesis testing

Presented by: Gerald Huang

MATH2089/2859/2099/CVEN2002 Revision Seminar

49 / 72

Before we begin... let's discuss an important distribution in statistics!

Student's *t*-distribution

A random variable T is said to follow a t_{ν} distribution if for $t \in \mathbb{R}$,

$$f(t) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu\pi}\Gamma\left(\frac{\nu}{2}\right)} \left(1 + \frac{t^2}{\nu}\right)^{-\frac{\nu+1}{2}}$$

for some integer $\nu.$ Additionally, Γ is the gamma function.

• ν is the **degrees of freedom** of the distribution!

Remark

As
$$n \to \infty$$
, $t_{\nu} \to \mathcal{N}(0, 1)$.

Presented by: Gerald Huang

MATH2089/2859/2099/CVEN2002 Revision Seminar

50 / 72

(Part

Null and alternative hypotheses

(Definition) Null hypothesis

For the null hypothesis H_0 , we claim that our population parameter takes some sort of value.

- It is a statement that we generally believe to be true.
- We say that $H_0: \mu = \mu_0$.

(Definition) Alternative hypothesis

For the alternative hypothesis H_1 , we have some sort of "new claim" that we want to test.

• We say that $H_1: \mu \neq \mu_0$.

Part

Test statistic and null distribution

• To test $H_0\mu = \mu_0$ using a random sample, when σ is known

$$Z = rac{(ar{X}-\mu_0)}{\sigma/\sqrt{n}} \stackrel{ extsf{a}}{\sim} \mathcal{N}(0,1).$$

• To test $H_0: \mu = \mu_0$ using a normal random sample, when σ is not known:

$$T=rac{\hat{X}-\mu_0}{S/\sqrt{n}}\sim t_
u.$$

• To test $H_0: \pi = \pi_0$ using a random sample

$$Z = \frac{\hat{P} - \pi_0}{\sqrt{\pi_0(1 - \pi_0)/n}} \stackrel{*}{\sim} \mathcal{N}(0, 1).$$

P-value

(Definition) *p*-values

The *P*-value is used to measure how much evidence there is **against** H_0 in favour of the alternative hypothesis.

The smaller the p value, the more evidence against the null hypothesis there is. If there's enough evidence against H_0 , we reject the null hypothesis.

Presented by: Gerald Huang

53 / 72

Set up of hypothesis testing

- State the null and alternative hypotheses.
- 2 State the test statistic and distribution of H_0 .
- Oraw a conclusion based on the corresponding *p*-value or rejection region.

Part

Inferring conclusions

- At the end of the day, we want to determine whether the original claim *H*₀ was a lie or not. We can reach this using a **rejection region** for a statistic.
 - It is a range of values for which we would reject the null hypothesis at level $\alpha.$

Hypothesis test about μ if σ is known

• Test statistic:
$$z = \frac{\bar{x} - \mu_0}{\sigma/\sqrt{n}}$$

• Rejection region $(\mu > \mu_0)$: $\left\{ \bar{x} > \mu_0 + z_{1-\alpha} \frac{\sigma}{\sqrt{n}} \right\}$.
• Rejection region $(\mu < \mu_0)$: $\left\{ \bar{x} < \mu_0 - z_{1-\alpha} \frac{\sigma}{\sqrt{n}} \right\}$.
• Rejection region $(\mu \neq \mu_0)$: $\bar{x} \notin \left[\mu_0 - z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}, \mu_0 + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} \right]$.

Presented by: Gerald Huang

Hypothesis test about μ if σ is NOT known

• Test statistic:
$$t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}}$$

• Rejection region
$$(\mu > \mu_0)$$
: $\bar{x} > \mu_0 + t_{1-\alpha,n-1} \frac{s}{\sqrt{n}}$.

• Rejection region
$$(\mu < \mu_0)$$
: $\bar{x} < \mu_0 - t_{1-\alpha,n-1} \frac{s}{\sqrt{n}}$.

• Rejection region
$$(\mu \neq \mu_0)$$
:
 $\bar{x} \notin \left[\mu_0 - t_{1-\alpha/2, n-1} \frac{s}{\sqrt{n}}, \mu_0 + t_{1-\alpha/2, n-1} \frac{s}{\sqrt{n}} \right]$

Presented by: Gerald Huang

MATH2089/2859/2099/CVEN2002 Revision Seminar

c

Hypothesis test about π

• Test statistic:
$$z = \frac{(\bar{p} - \pi_0)}{\sqrt{\pi_0(1 - \pi_0)/n}}$$

• Rejection region
$$(\mu > \mu_0)$$
: $\bar{p} > \pi_0 + z_{1-\alpha} \sqrt{\frac{\pi_0(1-\pi_0)}{n}}$

• Rejection region (
$$\mu < \mu_0$$
): $\bar{p} < \pi_0 - z_{1-\alpha} \sqrt{\frac{\pi_0(1-\pi_0)}{n}}$

• Rejection region
$$(\mu \neq \mu_0)$$
:
 $\bar{x} \notin \left[\pi_0 - z_{1-\alpha/2} \sqrt{\frac{\pi_0(1-\pi_0)}{n}}, \pi_0 + z_{1-\alpha/2} \sqrt{\frac{\pi_0(1-\pi_0)}{n}} \right].$

Presented by: Gerald Huang

MATH2089/2859/2099/CVEN2002 Revision Seminar

14

Example: (MATH2089, 2018S2 Q3c)

Assume Rugby New Zealand (the organising body for the sport) want to be able to demonstrate that Rugby viewership is in excess of 40% of New Zealanders, using a sample of size n. What are the appropriate null and alternative hypotheses for this test?

$$H_0: \pi = 0.4, \qquad H_a: \pi > 0.4.$$

Presented by: Gerald Huang

Example: (MATH2089, 2018S2 Q3c)

Assume Rugby New Zealand (the organising body for the sport) want to be able to demonstrate that Rugby viewership is in excess of 40% of New Zealanders, using a sample of size n. What is the distribution of the sample proportion \hat{p} , if the null hypothesis is true?

$$\mathcal{N}(0.4,\sqrt{0.4(1-0.4)/n}) = \mathcal{N}(0.4,0.4899/\sqrt{n}).$$

Presented by: Gerald Huang

Assume Rugby New Zealand (the organising body for the sport) want to be able to demonstrate that Rugby viewership is in excess of 40% of New Zealanders, using a sample of size n. Show that, for the relevant hypothesis test at the 0.05 significance level, the rejection region for \hat{p} can be expressed as

$$\left(0.4+rac{0.806}{\sqrt{n}},1
ight)$$

Rejection region is

$$\hat{p} > \pi_0 + z_{1-lpha} \sqrt{rac{\pi_0(1-\pi_0)}{n}} = 0.4 + z_{1-0.05} \sqrt{rac{0.4 imes 0.6}{n}}.$$
 This computes to

$$\hat{
ho} > 0.4 + 1.6449 imes 0.4899 / \sqrt{n} pprox 0.4 + 0.806 / \sqrt{n}.$$

Hence our rejection region is

$$\left(0.4 + \frac{0.806}{\sqrt{n}}, 1\right].$$

Presented by: Gerald Huang

MATH2089/2859/2099/CVEN2002 Revision Seminal

61 / 72

Part V: Analyses

Presented by: Gerald Huang

MATH2089/2859/2099/CVEN2002 Revision Seminar

62 / 72

Linear Regression

• Model the distribution of the random variable *Y*, conditional on the predictor *X*, assuming

$$Y = \beta_0 + \beta_1 x + \varepsilon.$$

The slope β_1 and the intercept β_0 are regression coefficients.

- β_0 is the **mean** of Y when X = 0.
- Slope β_1 is the change in mean of Y when X increases by 1.

Presented by: Gerald Huang

Least Squares Estimators

 We often don't know the true values of β₀ and β₁. So the next best thing is to estimate them.

Presented by: Gerald Huang

Assumptions based of the regression model

- Conditional mean is a linear function of x. Otherwise it doesn't make any sense!
- **2** Each error term $e_i = y_i (\beta_0 + \beta_1 x_i)$ are drawn independently of one another!
- Sech error term have the same variance.
- Sech error term have been drawn from a normal distribution.

Presented by: Gerald Huang

Inferences about the true slope

•
$$\hat{\beta}_1 = \frac{S_{XY}}{S_{XX}} = \sum_i \frac{(x_i - \bar{x})}{S_{XX}} Y_i$$
, where $Y \sim \mathcal{N}(\beta_0 + \beta_1 x_i, \sigma)$.

• Sampling distribution of $\hat{\beta}_1$ is

$$\hat{\beta}_1 \sim \mathcal{N}\left(\beta_1, \frac{\sigma}{\sqrt{S_{XX}}}\right).$$

• Apply a hypothesis test on $\hat{\beta}_1$ with

$$H_0:\hat{\beta}_1=0, \qquad H_a:\hat{\beta}_1\neq 0.$$

• Reject H_0 if $\hat{\beta}_1$ is too different to 0. In other words, the rejection region is

$$\hat{\beta}_1 \notin \left[\hat{\beta}_1 - t_{n-2;1-\alpha/2}\frac{S}{\sqrt{S_{XX}}}, \hat{\beta}_1 + t_{n-2;1-\alpha/2}\frac{S}{\sqrt{S_{XX}}}\right]$$

MATH2089/2859/2099/CVEN2002 Revision Seminar

Presented by: Gerald Huang

Inferences about β_0

•
$$\hat{\beta}_0 = \sum_{i=1}^n \frac{Y_i}{n} - \hat{\beta}_1 \bar{x}.$$

• Sampling distribution of $\hat{\beta}_1$ is

$$\hat{\beta}_0 \sim \mathcal{N}\left(\beta_0, \sigma \sqrt{\frac{1}{n} + \frac{\bar{x}^2}{S_{XX}}}\right).$$

Presented by: Gerald Huang

Correlation

• Recall that a regression returns a numerical relationship between two random variables. On the other hand, a correlation quantifies the strength of the linear relationship between X and Y. We can show that the sample correlation coefficient is given by

$$r=\frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}}.$$

Presented by: Gerald Huang

Analysis of Variance (ANOVA)

• We use analysis of variance when dealing with *k* random samples, where \bar{X}_i and S_i are the sample mean and standard deviation of the *i*th sample.

ANOVA model

$$X_{ij}=\mu_i+\varepsilon_{ij},$$

where μ_i is the mean at the *i*th treatment and ε_{ij} is an individual random error component.

Assumptions

$$\varepsilon_{ij} \stackrel{\text{i.i.d}}{\sim} \mathcal{N}(\mathbf{0}, \sigma).$$

• Errors are normally distributed, are independent and have the same variance.

Presented by: Gerald Huang

ANOVA hypotheses

- Null hypothesis: $H_0: \mu_1 = \mu_2 = \cdots = \mu_k$.
- Alternative hypothesis: H_a : not all means are the same.
 - We're not saying that ALL means are different, but that at least two means are different.

Fisher's *F*-distribution

Let $f_{d_1,d_2;\alpha}$ be a value such that

$$\mathbb{P}(X > f_{d_1, d_2; \alpha}) = 1 - \alpha,$$

where X follows an F_{d_1,d_2} distribution with density

$$f(X) = \frac{\Gamma((d_1 + d_2)/2)(d_1/d_2)^{d_1/2}x^{d_1/2-1}}{\Gamma(d_1/2)\Gamma(d_2/2)((d_1/d_2)x + 1)^{(d_1+d_2)/2}}.$$

Yeah nah, I don't remember this at all! They would normally give you a value by computing the command finv(α , d1, d2) for quantiles and 1-fcdf(x,d1,d2).

Presented by: Gerald Huang

ANOVA test

• Use the test statistic

$$f = \frac{\mathrm{ms}_{\mathrm{Tr}}}{\mathrm{ms}_{\mathrm{Er}}},$$

where f follows a Fisher distribution with $d_1 = k - 1$ and $d_2 = n - k$.

• Reject H_0 if

$$\frac{\mathsf{ms}_{\mathsf{Tr}}}{\mathsf{ms}_{\mathsf{Er}}} > f_{k-1,n-k;1-\alpha},$$

where $\mathsf{ms}_{\mathsf{Tr}}$ is the treatment mean squared and $\mathsf{ms}_{\mathsf{Er}}$ is the mean squared error.

Presented by: Gerald Huang