UNSW Mathematics Society presents **MATH2089/2099/2859**

Statistics

T2, 2020 **Presented by Gerald Huang**

Table of Contents I

- **1 [Part I: Random variables](#page-3-0)**
	- **Cumulative [distribution function](#page-5-0)**
	- **O** [Discrete](#page-6-0) RVs
	- **[Continuous](#page-7-0) RVs**
	- **•** [Expectation](#page-9-0)
	- [Variance and standard deviation](#page-13-0)
	- Joint [distributed RVs](#page-17-0)
		- **•** [Marginal functions](#page-19-0)
		- **•** [Independence of two random variables](#page-22-0)
	- [Covariance and correlation](#page-24-0)

2 [Part II: Sampling distributions and Central Limit Theorem](#page-28-0)

- Random [sampling](#page-29-0)
- Central [Limit Theorem](#page-30-0)
- **•** [Estimators](#page-32-0)

3 [Part III: Confidence intervals](#page-38-0)

Presented by: Gerald Huang Mathematic method of [MATH2089/2859/2099/CVEN2002 Revision Seminar](#page-0-0)

2 / 72

Table of Contents II

- [Sample size determination](#page-43-0)
- [Confidence interval for a proportion](#page-44-0)
- [One-sided confidence intervals for a proportion](#page-47-0)

4 [Part IV: Hypothesis testing](#page-48-0)

- Student's t [distribution](#page-49-0)
- [Null and Alternative Hypotheses](#page-50-0)
- [Rejection region](#page-54-0)

5 [Part V: Analyses](#page-61-0)

- [Regression Analysis](#page-62-0)
- [Assumptions of linear regression](#page-64-0)
- [Variance Analysis](#page-68-0)
- **•** Fisher's *F*[-distribution](#page-70-0)

[Part I: Random variables](#page-3-0)

Random variable

Definition I: Random variable

A random variable is a real-valued function defined over the sample space $X : S \to \mathbb{R}$ and $\omega \to X(\omega)$.

Cumulative distribution function (CDF)

Definition: Cumulative distribution function

A **cumulative distribution function** of a random variable X is defined, for any real number x , as

$$
F(x) = \mathbb{P}(X \leq x).
$$

Properties.

• For any real numbers $a < b$, we have

$$
\mathbb{P}(a < X \leq b) = F(b) - F(a).
$$

• It is **nondecreasing**. That is, if $x_1 \leq x_2$, then $F(x_1) \leq F(x_2)$.

$$
\bullet \lim_{x \to +\infty} F(x) = 1 \text{ and } \lim_{x \to -\infty} F(x) = 0.
$$

Presented by: Gerald Huang [MATH2089/2859/2099/CVEN2002 Revision Seminar](#page-0-0)

6 / 72

Discrete Random Variables

Definition: Discrete Random Variables

A random variable is said to be discrete if it can only assume a finite (or at most countably infinite) number of values.

• Essentially we can count each event!

Characterising a discrete random variable

Discrete random variables can be characterised by their **probability mass function** (pmf), defined by

$$
p(x) = \mathbb{P}(X = x).
$$

\bullet The sum of ALL elements x in the event A is 1. That is,

$$
\sum_{x \in A} p(x) = 1.
$$

Presented by: Gerald Huang [MATH2089/2859/2099/CVEN2002 Revision Seminar](#page-0-0)

7 / 72

Continuous Random Variables

Definition: Continuous Random Variables

A random variable is said to be continuous if it is defined over an **uncountable** set of real numbers, usually an intervals.

Characterising a continuous random variable

Continuous random variables can be characterised by their **probability density function** (pdf), defined by $f(x)$.

 \bullet The integral over ALL elements x in the event space A is 1. That is,

$$
\int_A f(x) \, dx = 1.
$$

Example

To determine whether $f(x) = e^{-x}$ for $x > 0$ is a density function, check whether

$$
\int_0^\infty e^{-x}\,dx=1.
$$

Expectation of random variables

Expectation of a discrete random variable

The expectation (or mean) of a discrete random variable, denoted $E(X)$ or μ , is defined by

$$
\mu = \mathbb{E}(X) = \sum_{x \in A} x p(x).
$$

Expectation of a continuous random variable

The expectation (or mean) of a continuous random variable, denoted $\mathbb{E}(X)$ or μ , is defined by

$$
\mu = \mathbb{E}(X) = \int_A xf(x) dx.
$$

10 / 72

Expectation of random variables (18S2)

Example: (2018 Semester 2, Q3a)

Let X follow the Bernoulli distribution:

$$
p(x) = \begin{cases} 1 - \pi, & \text{if } x = 0 \\ \pi, & \text{if } x = 1 \end{cases}
$$

where $0 < \pi < 1$. Show that $\mathbb{E}(X) = \pi$.

Since this is a **discrete** random variable, then the expected value is simply

$$
\mathbb{E}(X) = \sum_{x \in X} x p(x) = 0 \times (1 - \pi) + 1 \times \pi = \pi.
$$

Properties of the expectation function

• Linearity: For any two constants a and b, we have

$$
\mathbb{E}(aX+b)=a\cdot \mathbb{E}(X)+b.
$$

• Degenerate: A random variable X is said to be degenerate if

$$
\mathbb{E}(b)=b.
$$

Example
If
$$
E(X) = 2
$$
, then
 $E(3X + 4) = 3 \times E(X) + 4 = 3 \times 2 + 4 = 10$.

Example

If
$$
\mathbb{E}(3X + 4) = 10
$$
, then $3\mathbb{E}(X) + 4 = 10 \implies \mathbb{E}(X) = 2$.

Variance of a random variable

Variance of a random variable

The $\mathsf{variance}$ of a random variable, denoted by $\mathsf{Var}(X)$ or σ^2 , is defined by

$$
\text{Var}(X) = \mathbb{E}\left[(X-\mu)^2\right] = \mathbb{E}(X^2) - \mathbb{E}(X)^2.
$$

Properties of the variance function

- For any random variable, $Var(X) > 0$.
- For any two constants a and b, $Var(aX + b) = a^2 \cdot Var(X)$.
- For any constant b, $Var(b) = 0$.

Computing the variance

Variance of a discrete random variable The variance of a discrete random variable is defined by

$$
\text{Var}(X) = \sum_{x \in A} (x - \mu)^2 p(x) = \underbrace{\left(\sum_{x \in A} x^2 p(x)\right)}_{\mathbb{E}(X^2)} - \underbrace{\left(\sum_{x \in A} xp(x)\right)^2}_{\mathbb{E}(X)^2}
$$

Variance of a continuous random variable The variance of a continuous random variable is defined by

$$
\text{Var}(X) = \int_A (x - \mu)^2 f(x) dx = \underbrace{\left(\int_A x^2 f(x) dx\right)}_{\mathbb{E}(X^2)} - \underbrace{\left(\int_A x f(x) dx\right)}_{\mathbb{E}(X)^2}
$$

Presented by: Gerald Huang [MATH2089/2859/2099/CVEN2002 Revision Seminar](#page-0-0)

15 / 72

Example

If $f(x) = e^{-x}$ for $x > 0$, then the variance can be found by computing the integral

$$
Var(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2 = \int_0^\infty x^2 e^{-x} dx - \left(\int_0^\infty xe^{-x} dx\right)^2
$$

Standard deviation

• The standard deviation is simply the square root of the variance. That is,

$$
SD(X) = \sqrt{Var(X)}.
$$

• Since $Var(X) \ge 0$, then the standard deviation function will always be defined!

Jointly distributed random variables

We will now turn towards the two-dimensional case and discuss properties of distributions of two random variables!

Joint cumulative distribution function

Definition: Joint cumulative distribution function (discrete) The joint cumulative distribution function of discrete random variables X and Y is given by

 $F_{XY}(x, y) = \mathbb{P}(X \le x, Y \le y),$ for all $(x, y) \in \mathbb{R} \times \mathbb{R}$.

Definition: Joint cumulative distribution function (continuous)

X and Y are said to be jointly continuous if, for any sets A and B of real numbers, there is a function (the joint probability density of X and Y) $f_{XY}(x, y)$

$$
\mathbb{P}(X \in A, Y \in B) = \int_A \int_B f_{XY}(x, y) \, dy \, dx.
$$

19 / 72

Joint distribution functions and marginal functions

Discrete

Joint distribution

$$
p_{XY}(x, y) = \mathbb{P}(X = x, Y = y).
$$

Marginal probabilities

$$
p_X(x) = \sum_{y \in S_Y} p_{XY}(x, y).
$$

$$
p_Y(y) = \sum_{x \in S_X} p_{XY}(x, y).
$$

Continuous

Joint distribution

Denoted as $f_{XY}(x, y)$.

Marginal densities

$$
f_X(x) = \int_{S_Y} f_{XY}(x, y) dy.
$$

$$
f_Y(y) = \int_{S_X} f_{XY}(x, y) dx.
$$

Presented by: Gerald Huang [MATH2089/2859/2099/CVEN2002 Revision Seminar](#page-0-0)

20 / 72

Expectation of a function of two random variables

For any function $g : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, the expectation of $g(X, Y)$ is given by

$$
\mathbb{E}(g(X,Y)) =
$$

Discrete random variables

Continuous random variables

$$
\sum_{x \in S_X} \sum_{y \in S_Y} g(x, y) p_{XY}(x, y)
$$

Z S_{λ} Z S_{Y} $g(x, y)f_{XY}(x, y)$ dy dx

Linearity property of the expectation function still holds!

$$
\mathbb{E}(aX+bY)=a\cdot\mathbb{E}(X)+b\cdot\mathbb{E}(Y).
$$

Example: Table of marginal probabilities

$$
\begin{array}{c|c|c|c|c} & 0 & 1 & 2 & 3 \\ \hline 1/8 & 1/8 & 1/8 & 1/8 \\ 1 & 1/8 & 1/4 & 1/2 & 5/8 \\ 2 & 1/8 & 3/8 & 3/4 & 7/8 \\ 3 & 1/8 & 1/2 & 7/8 & 1 \end{array}
$$

Assume that X is across the top and Y is on the side. Find $\mathbb{P}(X \leq 1, Y \leq 1).$

$$
\mathbb{P}(X \le 1, Y \le 1) \n= \mathbb{P}(X = 0, Y = -1) + \mathbb{P}(X = 0, Y = 1) \n+ \mathbb{P}(X = 1, Y = -1) + \mathbb{P}(X = 1, Y = 1) \n= 1/8 + 1/8 + 1/8 + 1/4 = 5/8.
$$

Independent random variables

Definition: Independence of random variables

Random variables X and Y are said to be **independent** if, for all $(x, y) \in \mathbb{R} \times \mathbb{R}$,

$$
\mathbb{P}(X \leq x, Y \leq y) = \mathbb{P}(X \leq x) \times \mathbb{P}(Y \leq y).
$$

Discrete case

Continuous case

$$
p_{XY}(x,y)=p_X(x)\times p_Y(y).
$$

$$
f_{XY}(x, y) = f_X(x) \times f_Y(y).
$$

Property of independent random variables If X and Y are **independent**, then for any functions h and g ,

 $\mathbb{E}(h(X)g(Y)) = \mathbb{E}(h(X)) \times \mathbb{E}(g(Y)).$

Example: (MATH2089, 2009S1 Q5c)

Suppose that X and Y are independent standard normal variables. What is the distribution of $X + Y$?

Since X and Y are independently and normally distributed, then their sum is also normally distributed with

$$
Z \sim \mathcal{N}(\mu_X + \mu_Y, \sigma_X^2, \sigma_Y^2) = \mathcal{N}(0, 2).
$$

Covariance of two random variables

Definition: Covariance of two random variables The **covariance** of two random variables X and Y is defined as

$$
\mathrm{Cov}(X,Y)=\mathbb{E}\left[(X-\mathbb{E}(X))(Y-\mathbb{E}(Y))\right].
$$

Properties of covariance

- \bullet Cov $(X, X) = \text{Var}(X)$.
- **Symmetric**: For any two variables X and Y, $Cov(X, Y) = Cov(Y, X)$.
- **IMPORTANT**: $Cov(X, Y) = \mathbb{E}(XY) \mathbb{E}(X)\mathbb{E}(Y)$.
- \bullet Cov($aX + b$, $cY + d$) = ac Cov(X, Y)
- **Bilinearity**: $Cov(X_1 + X_2, Y_1 + Y_2) =$ $Cov(X_1, Y_1) + Cov(X_1, Y_2) + Cov(X_2, Y_1) + Cov(X_2, Y_2).$

Covariance and independence

• If X and Y are independent, then $Cov(X, Y) = 0$. But if $Cov(X, Y) = 0$, then X and Y may or may not be independent!

Remark

$$
X
$$
 and Y independent \implies Cov $(X, Y) = 0$.
Cov $(X, Y) = 0 \implies X$ and Y independent.

Variance of a sum of random variables

Variance of a sum of two random variables For any two random variables X and Y ,

$$
Var(aX + bY) = a^2 Var(X) + b^2 Var(Y) + 2ab Cov(X, Y).
$$

 \bullet If X and Y are independent, then

$$
Var(aX + bY) = a^2 Var(X) + b^2 Var(Y).
$$

Correlation coefficient

Definition: Correlation

The correlation coefficient denoted by *ρ* is defined as

$$
\rho = \frac{\text{Cov}(X, Y)}{\sqrt{\text{Var}(X)\text{Var}(Y)}}.
$$

We are computing the covariance between the **standardised** versions of X and Y .

Properties of correlation

- *ρ* does not have a unit.
- \bullet $-1 \leq \rho \leq 1$.
- Positive *ρ* means positive linear relationship between X and Y and vice versa for negative!
- The closer $|\rho|$ is to 1, the stronger the relationship!

[Part II: Sampling distributions and](#page-28-0) [Central Limit Theorem](#page-28-0)

Independent and identically distributed random variables

A sequence of random variables X_1, X_2, \ldots, X_N are said to be *i.i.d* if

- **D** all X_i 's are independent.
- \bullet all X_i 's share the same probability distribution (identically distributed).
- \bullet In MATH2089/2859/2099/CVEN2002, we can assume that the random variables in a random sampling are *i.i.d.*

Central Limit Theorem (aka the Big Man of probability)

- **What's this? Why do we care?**
	- **Q** CLT asserts:

For **any** random variable, the mean of a large random sample is approximately normal.

• Basically, regardless of its original distribution, the mean will eventually follow a normal distribution.

Standardising the CLT

If we want to standardise the $CIT...$

Central Limit Theorem

If X_1, X_2, \ldots, X_n is a random sample taken from a population with mean μ and finite variance σ^2 and if \bar{X} is the sample mean, then the limiting distribution of the standard mean follows the **standard normal distribution**. That is,

$$
\frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \stackrel{\text{\tiny{a}}}{\sim} \mathcal{N}(0,1).
$$

• Note that $\stackrel{a}{\sim}$ means "approximately follows" (as $n \to \infty$).

Estimators

Definition: Estimators

An **estimator** of *θ* is a function of the sample

$$
\hat{\Theta} = h(X_1, X_2, \ldots, X_n).
$$

- An estimator is also a random variable!
- The most natural choice of our estimator is the sample mean! But we can have many other examples of estimators.

\n- $$
\hat{\Theta}_1 = X_1
$$
.
\n- $\hat{\Theta}_2 = \left(\frac{X_1 + X_n}{2}\right)$.
\n- $\hat{\Theta}_3 = \left(\frac{2X_1 + X_n}{2}\right)$.
\n

Properties of estimators

Definition: Unbiased estimator

An estimator $\hat{\Theta}$ of θ is said to be **unbiased** if and only if its mean is equal to *θ*. That is

$$
\mathbb{E}\left(\hat{\Theta}\right) = \theta.
$$

• If an estimator is biased, then we can determine the bias by computing the difference

$$
\mathsf{Bias}\left(\hat{\Theta}\right) = \mathbb{E}\left(\hat{\Theta}\right) - \theta.
$$

Properties of estimators

Example: Biased vs unbiased estimators

$$
\hat{\Theta}_1 = X_1 \text{ is unbiased since } \mathbb{E}(\hat{\Theta}_1) = \theta.
$$

But $\mathbb{E}(\Theta_3) = \frac{1}{2} [\mathbb{2E}(X_1) + \mathbb{E}(X_n)] = \frac{3}{2} \theta$. So $\hat{\Theta}_3$ is biased.

Properties of estimators

Definition: Efficient estimator

Goal: An unbiased estimator should have a smaller variance. Such an estimator is said to be more efficient.

Example: Efficiency of estimators

Var(
$$
\Theta_1
$$
) = σ^2 and Var(Θ_2) = $\frac{\sigma^2}{2}$. Hence Θ_2 is more efficient than Θ_1 .
Properties of estimators

Definition: Consistent estimator

Goal: An unbiased estimator should also give better estimations as the number of samples grow larger. That is, an estimator is said to be consistent if

$$
\mathsf{Var}\left(\hat{\Theta}\right) \to 0 \quad \text{as } n \to \infty.
$$

Combining all three properties of estimators

We can combine all three of these properties into a single formula that tells us how accurate an estimator is. This is the **mean squared error**, which can be evaluated by computing the following

$$
\mathsf{MSE}\left(\hat{\Theta}\right) = \mathsf{Var}\left(\hat{\Theta}\right) + \mathsf{Bias}\left(\hat{\Theta}\right)^2.
$$

A smaller MSE means a more accurate estimator.

[Part III: Confidence intervals](#page-38-0)

• Basically... we want to find a suitable range for which our estimation misses the mark with probability *α*. Note that *α* is just a percentage here!

Definition: Confidence intervals

A 100 $(1 - \alpha)$ % confidence interval for an unknown parameter θ is a random interval $[L, U]$, where L and U are statistics such that

 $\mathbb{P}(L \leq \theta \leq U) = 1 - \alpha.$

Here, our random sample has a parameter of *θ*!

Deriving confidence intervals

- ¹ Find a range of values that contains Z ∼ N (0*,* 1) with probability $1 - \alpha$.
- **2** Apply the result of the CLT

$$
\frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \stackrel{a}{\sim} \mathcal{N}(0,1).
$$

3 Solve for μ for which you have a 100 $(1 - \alpha)$ % confidence interval for μ to be

$$
\left[\bar{x}-z_{1-\alpha/2}\frac{\sigma}{\sqrt{n}},\bar{x}+z_{1-\alpha/2}\frac{\sigma}{\sqrt{n}}\right].
$$

Presented by: Gerald Huang [MATH2089/2859/2099/CVEN2002 Revision Seminar](#page-0-0)

Remark

If the data is exactly normally distributed, then the confidence intervals are exact!

Remark

The length of the interval measures how *precise* estimation has been! The shorter, the more precise!

Remark

Confidence intervals don't have to be symmetric! In most cases, they aren't.

Example: (MATH2089, 2018 S2 Q3bi)

In August this year, Roy Morgan Research published a poll on Rugby viewership of New Zealanders. The poll, of 6,422 randomly selected New Zealanders, found that 43.6% of them watch Rugby on the television.

Find a 95% confidence interval for the true proportion of New Zealanders who watch Rugby on the television.

Step 1.

Determine what the population proportion mean is.

$$
\hat{p} = 0.436
$$
 so $1 - \hat{p} = 0.564$.

So $SE^2 = \frac{0.436 \times 0.564}{6433}$ $\frac{64.8331}{6422}$ = 0.00003829. So *SE* = 0.006187962. Hence the two sided confidence interval is

$$
\left[\bar{x} - z_{1-0.95/2} \times 0.006187962, \bar{x} + z_{1-0.95/2} \times 0.006187962 \right]
$$

.

44 / 72

Sample size determination

Margin of error

Given a pre-specified value e such that $|\bar{x} - \mu| < e$, the sample size determined is given by

$$
e = z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} \implies n = \left(\frac{z_{1-\alpha/2} \sigma}{e}\right)^2
$$

Confidence interval for a proportion

 \bullet We made some inferences about the population mean μ in the previous slides; let's move onto a population proportion *π*.

Sample proportion estimator

A useful estimator of the proportion is the **sample proportion**

$$
\hat{P}=\frac{X}{n},
$$

for some Binomial random variable X such that $X \sim Bin(n, \pi)$.

Sample proportion estimate

An estimate of
$$
\pi
$$
 is simply $\hat{p} = \frac{x}{n}$.

Sampling distribution of \hat{P}

Applying the Central Limit Theorem to \hat{P} , we obtain the result

$$
\frac{\hat{\mathsf{P}} - \pi}{\sqrt{\pi(1-\pi)/n}} \stackrel{a}{\sim} \mathcal{N}(0,1).
$$

Additionally, we can also say that

$$
\frac{\hat{\mathsf{P}} - \pi}{\sqrt{\hat{\mathsf{P}} (1-\hat{\mathsf{P}})/n}} \stackrel{a}{\sim} \mathcal{N}(0,1).
$$

Deriving confidence intervals

- ¹ Find a range of values that contains Z ∼ N (0*,* 1) with probability $1 - \alpha$.
- **2** Apply the result of the CLT

$$
\frac{\hat{\mathsf{P}} - \pi_0}{\sqrt{\pi(1-\pi)/n}} \stackrel{\text{\rm\tiny a}}{\sim} \mathcal{N}(0,1).
$$

3 Solve for π for which you have a 100(1 − α)% confidence interval for *π* to be

$$
\left[\hat{p}-z_{1-\alpha/2}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}},\hat{p}+z_{1-\alpha/2}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right]
$$

Presented by: Gerald Huang [MATH2089/2859/2099/CVEN2002 Revision Seminar](#page-0-0)

.

One-sided confidence intervals

We can also find one-sided large-sample confidence intervals for the proportion π by finding

$$
\left[0, \hat{p}+z_{1-\alpha}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right] \quad \text{and} \quad \left[\hat{p}-z_{1-\alpha}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, 1\right].
$$

Presented by: Gerald Huang [MATH2089/2859/2099/CVEN2002 Revision Seminar](#page-0-0)

[Part IV: Hypothesis testing](#page-48-0)

Presented by: Gerald Huang [MATH2089/2859/2099/CVEN2002 Revision Seminar](#page-0-0)

Before we begin... let's discuss an important distribution in statistics!

Student's t**-distribution**

A random variable T is said to follow a t_{ν} distribution if for $t \in \mathbb{R}$,

$$
f(t) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu \pi} \Gamma\left(\frac{\nu}{2}\right)} \left(1 + \frac{t^2}{\nu}\right)^{-\frac{\nu+1}{2}}
$$

for some integer *ν*. Additionally, Γ is the gamma function.

ν is the **degrees of freedom** of the distribution!

Remark

As
$$
n \to \infty
$$
, $t_{\nu} \to \mathcal{N}(0, 1)$.

Presented by: Gerald Huang [MATH2089/2859/2099/CVEN2002 Revision Seminar](#page-0-0)

,

Null and alternative hypotheses

(Definition) Null hypothesis

For the null hypothesis H_0 , we claim that our population parameter takes some sort of value.

- It is a statement that we generally believe to be true.
- \bullet We say that H_0 : $\mu = \mu_0$.

(Definition) Alternative hypothesis

For the alternative hypothesis H_1 , we have some sort of "new claim" that we want to test.

 \bullet We say that H_1 : $\mu \neq \mu_0$.

Test statistic and null distribution

• To test $H_0\mu = \mu_0$ using a random sample, when σ is known

$$
Z=\frac{(\bar X-\mu_0)}{\sigma/\sqrt{n}}\stackrel{a}{\sim}\mathcal{N}(0,1).
$$

• To test H_0 : $\mu = \mu_0$ using a normal random sample, when σ is not known:

$$
T=\frac{\hat{X}-\mu_0}{S/\sqrt{n}}\sim t_{\nu}.
$$

• To test H_0 : $\pi = \pi_0$ using a random sample

$$
Z=\frac{\hat{P}-\pi_0}{\sqrt{\pi_0(1-\pi_0)/n}}\stackrel{a}{\sim}\mathcal{N}(0,1).
$$

Presented by: Gerald Huang [MATH2089/2859/2099/CVEN2002 Revision Seminar](#page-0-0)

P**-value**

(Definition) p**-values**

The P-value is used to measure how much evidence there is **against** H_0 in favour of the alternative hypothesis.

The smaller the p value, the more evidence against the null hypothesis there is. If there's enough evidence against H_0 , we reject the null hypothesis.

Presented by: Gerald Huang [MATH2089/2859/2099/CVEN2002 Revision Seminar](#page-0-0)

Set up of hypothesis testing

- **1** State the null and alternative hypotheses.
- 2 State the test statistic and distribution of H_0 .
- **3** Draw a conclusion based on the corresponding p-value or rejection region.

Inferring conclusions

- At the end of the day, we want to determine whether the original claim H_0 was a lie or not. We can reach this using a **rejection region** for a statistic.
	- It is a range of values for which we would reject the null hypothesis at level *α*.

\n- Test statistic:
$$
z = \frac{\bar{x} - \mu_0}{\sigma/\sqrt{n}}
$$
\n- Rejection region $(\mu > \mu_0)$: $\left\{ \bar{x} > \mu_0 + z_{1-\alpha} \frac{\sigma}{\sqrt{n}} \right\}$
\n- Rejection region $(\mu < \mu_0)$: $\left\{ \bar{x} < \mu_0 - z_{1-\alpha} \frac{\sigma}{\sqrt{n}} \right\}$
\n- Rejection region $(\mu \neq \mu_0)$: $\bar{x} \notin \left[\mu_0 - z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}, \mu_0 + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} \right]$
\n

Hypothesis test about *µ* **if** *σ* **is NOT known**

• Test statistic:
$$
t = \frac{\bar{x} - \mu_0}{s / \sqrt{n}}
$$

• Rejection region
$$
(\mu > \mu_0)
$$
: $\bar{x} > \mu_0 + t_{1-\alpha,n-1} \frac{s}{\sqrt{n}}$.

• Rejection region
$$
(\mu < \mu_0)
$$
: $\bar{x} < \mu_0 - t_{1-\alpha,n-1} \frac{s}{\sqrt{n}}$.

• Rejection region
$$
(\mu \neq \mu_0)
$$
:
\n $\bar{x} \notin \left[\mu_0 - t_{1-\alpha/2,n-1} \frac{s}{\sqrt{n}}, \mu_0 + t_{1-\alpha/2,n-1} \frac{s}{\sqrt{n}} \right].$

Presented by: Gerald Huang [MATH2089/2859/2099/CVEN2002 Revision Seminar](#page-0-0)

Hypothesis test about *π*

• Test statistic:
$$
z = \frac{(\bar{p} - \pi_0)}{\sqrt{\pi_0(1 - \pi_0)/n}}
$$

• Rejection region
$$
(\mu > \mu_0)
$$
: $\bar{p} > \pi_0 + z_{1-\alpha} \sqrt{\frac{\pi_0(1-\pi_0)}{n}}$

• Rejection region
$$
(\mu < \mu_0)
$$
: $\bar{p} < \pi_0 - z_{1-\alpha} \sqrt{\frac{\pi_0(1-\pi_0)}{n}}$

• Rejection region
$$
(\mu \neq \mu_0)
$$
:
\n $\bar{x} \notin \left[\pi_0 - z_{1-\alpha/2} \sqrt{\frac{\pi_0 (1-\pi_0)}{n}}, \pi_0 + z_{1-\alpha/2} \sqrt{\frac{\pi_0 (1-\pi_0)}{n}} \right].$

Presented by: Gerald Huang [MATH2089/2859/2099/CVEN2002 Revision Seminar](#page-0-0)

.

.

Example: (MATH2089, 2018S2 Q3c)

Assume Rugby New Zealand (the organising body for the sport) want to be able to demonstrate that Rugby viewership is in excess of 40% of New Zealanders, using a sample of size n. What are the appropriate null and alternative hypotheses for this test?

$$
H_0: \pi = 0.4,
$$
 $H_a: \pi > 0.4.$

Example: (MATH2089, 2018S2 Q3c)

Assume Rugby New Zealand (the organising body for the sport) want to be able to demonstrate that Rugby viewership is in excess of 40% of New Zealanders, using a sample of size n. What is the distribution of the sample proportion \hat{p} , if the null hypothesis is true?

$$
\mathcal{N}(0.4, \sqrt{0.4(1-0.4)/n}) = \mathcal{N}(0.4, 0.4899/\sqrt{n}).
$$

Presented by: Gerald Huang [MATH2089/2859/2099/CVEN2002 Revision Seminar](#page-0-0)

Assume Rugby New Zealand (the organising body for the sport) want to be able to demonstrate that Rugby viewership is in excess of 40% of New Zealanders, using a sample of size n. Show that, for the relevant hypothesis test at the 0.05 significance level, the rejection region for \hat{p} can be expressed as

$$
\left(0.4+\frac{0.806}{\sqrt{n}},1\right]
$$

Rejection region is

$$
\hat{p} > \pi_0 + z_{1-\alpha} \sqrt{\frac{\pi_0 (1-\pi_0)}{n}} = 0.4 + z_{1-0.05} \sqrt{\frac{0.4 \times 0.6}{n}}.
$$
 This computes to

$$
\hat{\rho} > 0.4 + 1.6449 \times 0.4899/\sqrt{n} \approx 0.4 + 0.806/\sqrt{n}.
$$

Hence our rejection region is

$$
\left(0.4+\frac{0.806}{\sqrt{h_3}},1\right].
$$

Presented by: Gerald Huang [MATH2089/2859/2099/CVEN2002 Revision Seminar](#page-0-0)

[Part I: Random variables](#page-3-0) [Part II: Sampling distributions and Central Limit Theorem](#page-28-0) [Part III: Confidence intervals](#page-38-0) Part

[Part V: Analyses](#page-61-0)

Presented by: Gerald Huang [MATH2089/2859/2099/CVEN2002 Revision Seminar](#page-0-0)

Linear Regression

 \bullet Model the distribution of the random variable Y, conditional on the predictor X , assuming

$$
Y = \beta_0 + \beta_1 x + \varepsilon.
$$

The slope β_1 and the intercept β_0 are regression coefficients.

- β_0 is the **mean** of Y when $X = 0$.
- Slope β_1 is the change in mean of Y when X increases by 1.

Least Squares Estimators

• We often don't know the true values of β_0 and β_1 . So the next best thing is to estimate them.

Assumptions based of the regression model

- \bullet Conditional mean is a linear function of x. Otherwise it doesn't make any sense!
- 2 Each error term $e_i = y_i (\beta_0 + \beta_1 x_i)$ are drawn independently of one another!
- ³ Each error term have the same variance.
- ⁴ Each error term have been drawn from a normal distribution.

Inferences about the true slope

•
$$
\hat{\beta}_1 = \frac{S_{XY}}{S_{XX}} = \sum_i \frac{(x_i - \bar{x})}{S_{XX}} Y_i
$$
, where $Y \sim \mathcal{N}(\beta_0 + \beta_1 x_i, \sigma)$.

Sampling distribution of $\hat{\beta}_1$ is

$$
\hat{\beta}_1 \sim \mathcal{N}\left(\beta_1, \frac{\sigma}{\sqrt{S_{XX}}}\right).
$$

Apply a hypothesis test on $\hat{\beta}_1$ with

$$
H_0: \hat{\beta}_1 = 0, \qquad H_a: \hat{\beta}_1 \neq 0.
$$

Reject H_0 if $\hat{\beta}_1$ is too different to 0. In other words, the rejection region is

$$
\hat{\beta}_1 \notin \left[\hat{\beta}_1 - t_{n-2; 1-\alpha/2} \frac{S}{\sqrt{S_{XX}}}, \hat{\beta}_1 + t_{n-2; 1-\alpha/2} \frac{S}{\sqrt{S_{XX}}} \right].
$$

Presented by: Gerald Huang [MATH2089/2859/2099/CVEN2002 Revision Seminar](#page-0-0)

Inferences about $β_0$

$$
\bullet \hat{\beta}_0 = \sum_{i=1}^n \frac{Y_i}{n} - \hat{\beta}_1 \bar{x}.
$$

Sampling distribution of $\hat{\beta}_1$ is

$$
\hat{\beta}_0 \sim \mathcal{N}\left(\beta_0, \sigma \sqrt{\frac{1}{n} + \frac{\bar{x}^2}{S_{XX}}}\right).
$$

Correlation

• Recall that a regression returns a numerical relationship between two random variables. On the other hand, a correlation quantifies the strength of the linear relationship between X and Y . We can show that the sample correlation coefficient is given by

$$
r=\frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}}.
$$

Presented by: Gerald Huang [MATH2089/2859/2099/CVEN2002 Revision Seminar](#page-0-0)

Analysis of Variance (ANOVA)

 \bullet We use analysis of variance when dealing with k random samples, where \bar{X}_i and S_i are the sample mean and standard deviation of the ith sample.

ANOVA model

$$
X_{ij}=\mu_i+\varepsilon_{ij},
$$

where μ_i is the mean at the *i*th treatment and ε_{ij} is an individual random error component.

Assumptions

$$
\varepsilon_{ij} \stackrel{\text{i.i.d}}{\sim} \mathcal{N}(0, \sigma).
$$

Errors are normally distributed, are independent and have the same variance.

Presented by: Gerald Huang [MATH2089/2859/2099/CVEN2002 Revision Seminar](#page-0-0)

ANOVA hypotheses

- Null hypothesis: $H_0: \mu_1 = \mu_2 = \cdots = \mu_k$.
- Alternative hypothesis: H_a : not all means are the same.
	- We're not saying that ALL means are different, but that at least two means are different.

Fisher's F**-distribution**

Let $f_{d_1,d_2;\alpha}$ be a value such that

$$
\mathbb{P}(X > f_{d_1,d_2;\alpha}) = 1 - \alpha,
$$

where X follows an F_{d_1,d_2} distribution with density

$$
f(X) = \frac{\Gamma((d_1+d_2)/2)(d_1/d_2)^{d_1/2}x^{d_1/2-1}}{\Gamma(d_1/2)\Gamma(d_2/2)((d_1/d_2)x+1)^{(d_1+d_2)/2}}.
$$

Yeah nah, I don't remember this at all! They would normally give you a value by computing the command $finv(\alpha, d1, d2)$ for quantiles and $1-fcdf(x,d1,d2)$.

ANOVA test

• Use the test statistic

$$
f=\frac{ms_{\mathsf{Tr}}}{ms_{\mathsf{Er}}},
$$

where f follows a Fisher distribution with $d_1 = k - 1$ and $d_2 = n - k$.

• Reject H_0 if

$$
\frac{\mathsf{ms}_{\mathsf{Tr}}}{\mathsf{ms}_{\mathsf{Er}}} > f_{k-1,n-k;1-\alpha},
$$

where ms_{Tr} is the treatment mean squared and ms_{Er} is the mean squared error.