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Random variable

Definition I: Random variable
A random variable is a real-valued function defined over the sample
space X : S → R and ω → X (ω).
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Cumulative distribution function (CDF)

Definition: Cumulative distribution function
A cumulative distribution function of a random variable X is
defined, for any real number x , as

F (x) = P(X ≤ x).

Properties.
For any real numbers a ≤ b, we have

P(a < X ≤ b) = F (b)− F (a).

It is nondecreasing. That is, if x1 ≤ x2, then F (x1) ≤ F (x2).

lim
x→+∞

F (x) = 1 and lim
x→−∞

F (x) = 0.
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Discrete Random Variables
Definition: Discrete Random Variables
A random variable is said to be discrete if it can only assume a
finite (or at most countably infinite) number of values.

Essentially we can count each event!

Characterising a discrete random variable
Discrete random variables can be characterised by their probability
mass function (pmf), defined by

p(x) = P(X = x).

The sum of ALL elements x in the event A is 1. That is,∑
x∈A

p(x) = 1.

7 / 72
MATH2089/2859/2099/CVEN2002 Revision SeminarPresented by: Gerald Huang



Part I: Random variables Part II: Sampling distributions and Central Limit Theorem Part III: Confidence intervals Part IV: Hypothesis testing Part V: Analyses

Continuous Random Variables

Definition: Continuous Random Variables
A random variable is said to be continuous if it is defined over an
uncountable set of real numbers, usually an intervals.

Characterising a continuous random variable
Continuous random variables can be characterised by their
probability density function (pdf), defined by f (x).

The integral over ALL elements x in the event space A is 1. That is,∫
A

f (x) dx = 1.
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Example
To determine whether f (x) = e−x for x > 0 is a density function,
check whether ∫ ∞

0
e−x dx = 1.
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Expectation of random variables

Expectation of a discrete random variable
The expectation (or mean) of a discrete random variable, denoted
E(X ) or µ, is defined by

µ = E(X ) =
∑
x∈A

xp(x).

Expectation of a continuous random variable
The expectation (or mean) of a continuous random variable,
denoted E(X ) or µ, is defined by

µ = E(X ) =
∫

A
xf (x) dx .
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Expectation of random variables (18S2)

Example: (2018 Semester 2, Q3a)
Let X follow the Bernoulli distribution:

p(x) =
{

1− π, if x = 0
π, if x = 1

where 0 < π < 1.
Show that E(X ) = π.

Since this is a discrete random variable, then the expected value
is simply

E(X ) =
∑
x∈X

xp(x) = 0× (1− π) + 1× π = π.
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Properties of the expectation function
Linearity: For any two constants a and b, we have

E(aX + b) = a · E(X ) + b.

Degenerate: A random variable X is said to be degenerate if

E(b) = b.
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Example
If E(X ) = 2, then

E(3X + 4) = 3× E(X ) + 4 = 3× 2 + 4 = 10.

Example
If E(3X + 4) = 10, then 3E(X ) + 4 = 10 =⇒ E(X ) = 2.
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Variance of a random variable

Variance of a random variable
The variance of a random variable, denoted by Var(X ) or σ2, is
defined by

Var(X ) = E
[
(X − µ)2

]
= E(X 2)− E(X )2.

Properties of the variance function

For any random variable, Var(X ) ≥ 0.

For any two constants a and b, Var(aX + b) = a2 · Var(X ).

For any constant b, Var(b) = 0.
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Computing the variance
Variance of a discrete random variable
The variance of a discrete random variable is defined by

Var(X ) =
∑
x∈A

(x − µ)2p(x) =

∑
x∈A

x2p(x)


︸ ︷︷ ︸

E(X2)

−

∑
x∈A

xp(x)

2

︸ ︷︷ ︸
E(X)2

Variance of a continuous random variable
The variance of a continuous random variable is defined by

Var(X ) =
∫

A
(x − µ)2f (x) dx =

(∫
A

x2f (x) dx
)

︸ ︷︷ ︸
E(X2)

−
(∫

A
xf (x) dx

)2

︸ ︷︷ ︸
E(X)2
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Example
If f (x) = e−x for x > 0, then the variance can be found by
computing the integral

Var(X ) = E(X 2)− E(X )2 =
∫ ∞

0
x2e−x dx −

(∫ ∞
0

xe−x dx
)2
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Standard deviation

The standard deviation is simply the square root of the variance.
That is,

SD(X ) =
√

Var(X ).

Since Var(X ) ≥ 0, then the standard deviation function will always
be defined!
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Jointly distributed random variables

We will now turn towards the two-dimensional case and discuss
properties of distributions of two random variables!

18 / 72
MATH2089/2859/2099/CVEN2002 Revision SeminarPresented by: Gerald Huang



Part I: Random variables Part II: Sampling distributions and Central Limit Theorem Part III: Confidence intervals Part IV: Hypothesis testing Part V: Analyses

Joint cumulative distribution function

Definition: Joint cumulative distribution function (discrete)
The joint cumulative distribution function of discrete random
variables X and Y is given by

FXY (x , y) = P(X ≤ x ,Y ≤ y), for all (x , y) ∈ R× R.

Definition: Joint cumulative distribution function
(continuous)
X and Y are said to be jointly continuous if, for any sets A and B
of real numbers, there is a function (the joint probability density of
X and Y ) fXY (x , y)

P(X ∈ A,Y ∈ B) =
∫

A

∫
B

fXY (x , y) dy dx .
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Joint distribution functions and marginal
functions

Discrete
Joint distribution

pXY (x , y) = P(X = x ,Y = y).

Marginal probabilities

pX (x) =
∑

y∈SY

pXY (x , y).

pY (y) =
∑

x∈SX

pXY (x , y).

Continuous
Joint distribution
Denoted as fXY (x , y).

Marginal densities

fX (x) =
∫

SY
fXY (x , y) dy .

fY (y) =
∫

SX
fXY (x , y) dx .
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Expectation of a function of two random
variables

For any function g : R× R→ R, the expectation of g(X ,Y ) is
given by

E(g(X ,Y )) =

Discrete random variables

∑
x∈SX

∑
y∈SY

g(x , y)pXY (x , y)

Continuous random variables

∫
SX

∫
SY

g(x , y)fXY (x , y) dy dx

Linearity property of the expectation function still holds!

E(aX + bY ) = a · E(X ) + b · E(Y ).
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Example: Table of marginal probabilities
0 1 2 3

-1 1/8 1/8 1/8 1/8
1 1/8 1/4 1/2 5/8
2 1/8 3/8 3/4 7/8
3 1/8 1/2 7/8 1

Assume that X is across the top and Y is on the side. Find
P(X ≤ 1,Y ≤ 1).

P(X ≤ 1,Y ≤ 1)
= P(X = 0,Y = −1) + P(X = 0,Y = 1)
+ P(X = 1,Y = −1) + P(X = 1,Y = 1)
= 1/8 + 1/8 + 1/8 + 1/4 = 5/8.
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Independent random variables

Definition: Independence of random variables
Random variables X and Y are said to be independent if, for all
(x , y) ∈ R× R,

P(X ≤ x ,Y ≤ y) = P(X ≤ x)× P(Y ≤ y).

Discrete case

pXY (x , y) = pX (x)× pY (y).

Continuous case

fXY (x , y) = fX (x)× fY (y).

Property of independent random variables
If X and Y are independent, then for any functions h and g ,

E(h(X )g(Y )) = E(h(X ))× E(g(Y )).
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Example: (MATH2089, 2009S1 Q5c)
Suppose that X and Y are independent standard normal variables.
What is the distribution of X + Y ?

Since X and Y are independently and normally distributed , then
their sum is also normally distributed with

Z ∼ N (µX + µY , σ
2
X , σ

2
Y ) = N (0, 2).
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Covariance of two random variables
Definition: Covariance of two random variables
The covariance of two random variables X and Y is defined as

Cov(X ,Y ) = E [(X − E(X ))(Y − E(Y ))] .

Properties of covariance

Cov(X ,X ) = Var(X ).

Symmetric: For any two variables X and Y ,
Cov(X ,Y ) = Cov(Y ,X ).

IMPORTANT: Cov(X ,Y ) = E(XY )− E(X )E(Y ).

Cov(aX + b, cY + d) = ac Cov(X ,Y )

Bilinearity: Cov(X1 + X2,Y1 + Y2) =
Cov(X1,Y1) + Cov(X1,Y2) + Cov(X2,Y1) + Cov(X2,Y2).
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Covariance and independence

If X and Y are independent, then Cov(X ,Y ) = 0. But if
Cov(X ,Y ) = 0, then X and Y may or may not be independent!

Remark
X and Y independent =⇒ Cov(X ,Y ) = 0.
Cov(X ,Y ) = 0 6=⇒ X and Y independent.
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Variance of a sum of random variables

Variance of a sum of two random variables
For any two random variables X and Y ,

Var(aX + bY ) = a2 Var(X ) + b2 Var(Y ) + 2ab Cov(X ,Y ).

If X and Y are independent, then

Var(aX + bY ) = a2 Var(X ) + b2 Var(Y ).
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Correlation coefficient
Definition: Correlation
The correlation coefficient denoted by ρ is defined as

ρ = Cov(X ,Y )√
Var(X ) Var(Y )

.

We are computing the covariance between the standardised
versions of X and Y .

Properties of correlation
ρ does not have a unit.

−1 ≤ ρ ≤ 1.

Positive ρ means positive linear relationship between X and Y and
vice versa for negative!

The closer |ρ| is to 1, the stronger the relationship!
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Part II: Sampling distributions and
Central Limit Theorem
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Independent and identically distributed random variables
A sequence of random variables X1,X2, . . . ,XN are said to be i.i.d
if

1 all Xi ’s are independent.
2 all Xi ’s share the same probability distribution (identically

distributed).

In MATH2089/2859/2099/CVEN2002, we can assume that the
random variables in a random sampling are i.i.d.
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Central Limit Theorem (aka the Big Man of
probability)
What’s this? Why do we care?

CLT asserts:

For any random variable, the mean of a large random sample is
approximately normal.

Basically, regardless of its original distribution, the mean will
eventually follow a normal distribution.
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Standardising the CLT

If we want to standardise the CLT...
Central Limit Theorem
If X1,X2, . . . ,Xn is a random sample taken from a population with
mean µ and finite variance σ2 and if X̄ is the sample mean, then
the limiting distribution of the standard mean follows the standard
normal distribution. That is,

X̄ − µ
σ/
√

n
a∼ N (0, 1).

Note that a∼ means ”approximately follows” (as n→∞).
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Estimators

Definition: Estimators
An estimator of θ is a function of the sample

Θ̂ = h(X1,X2, . . . ,Xn).

An estimator is also a random variable!
The most natural choice of our estimator is the sample mean! But
we can have many other examples of estimators.

Θ̂1 = X1.
Θ̂2 =

(X1 + Xn

2

)
.

Θ̂3 =
(2X1 + Xn

2

)
.
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Properties of estimators

Definition: Unbiased estimator
An estimator Θ̂ of θ is said to be unbiased if and only if its mean
is equal to θ. That is

E
(

Θ̂
)

= θ.

If an estimator is biased, then we can determine the bias by
computing the difference

Bias
(

Θ̂
)

= E
(

Θ̂
)
− θ.
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Properties of estimators

Example: Biased vs unbiased estimators
Θ̂1 = X1 is unbiased since E(Θ̂1) = θ.
But E(Θ3) = 1

2 [2E(X1) + E(Xn)] = 3
2θ. So Θ̂3 is biased.
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Properties of estimators

Definition: Efficient estimator
Goal: An unbiased estimator should have a smaller variance. Such
an estimator is said to be more efficient.

Example: Efficiency of estimators

Var(Θ1) = σ2 and Var(Θ2) = σ2

2 . Hence Θ2 is more efficient than
Θ1.
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Properties of estimators

Definition: Consistent estimator
Goal: An unbiased estimator should also give better estimations as
the number of samples grow larger. That is, an estimator is said to
be consistent if

Var
(

Θ̂
)
→ 0 as n→∞.
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Combining all three properties of estimators

We can combine all three of these properties into a single formula
that tells us how accurate an estimator is. This is the mean
squared error, which can be evaluated by computing the following

MSE
(

Θ̂
)

= Var
(

Θ̂
)

+ Bias
(

Θ̂
)2
.

A smaller MSE means a more accurate estimator.
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Part III: Confidence intervals
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Basically... we want to find a suitable range for which our
estimation misses the mark with probability α. Note that α is just a
percentage here!

Definition: Confidence intervals
A 100(1− α)% confidence interval for an unknown parameter θ is
a random interval [L,U], where L and U are statistics such that

P(L ≤ θ ≤ U) = 1− α.

Here, our random sample has a parameter of θ!

40 / 72
MATH2089/2859/2099/CVEN2002 Revision SeminarPresented by: Gerald Huang



Part I: Random variables Part II: Sampling distributions and Central Limit Theorem Part III: Confidence intervals Part IV: Hypothesis testing Part V: Analyses

Deriving confidence intervals

1 Find a range of values that contains Z ∼ N (0, 1) with probability
1− α.

2 Apply the result of the CLT

X̄ − µ
σ/
√

n
a∼ N (0, 1).

3 Solve for µ for which you have a 100(1− α)% confidence interval
for µ to be [

x̄ − z1−α/2
σ√
n
, x̄ + z1−α/2

σ√
n

]
.
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Remark
If the data is exactly normally distributed, then the confidence
intervals are exact!

Remark
The length of the interval measures how precise estimation has
been! The shorter, the more precise!

Remark
Confidence intervals don’t have to be symmetric! In most cases,
they aren’t.
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Example: (MATH2089, 2018 S2 Q3bi)
In August this year, Roy Morgan Research published a poll on
Rugby viewership of New Zealanders. The poll, of 6,422 randomly
selected New Zealanders, found that 43.6% of them watch Rugby
on the television.
Find a 95% confidence interval for the true proportion of New
Zealanders who watch Rugby on the television.

Step 1.
Determine what the population proportion mean is.

p̂ = 0.436 so 1− p̂ = 0.564.

So SE 2 = 0.436× 0.564
6422 = 0.00003829. So SE = 0.006187962.

Hence the two sided confidence interval is[
x̄ − z1−0.95/2 × 0.006187962, x̄ + z1−0.95/2 × 0.006187962

]
.
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Sample size determination

Margin of error
Given a pre-specified value e such that |x̄ − µ| < e, the sample size
determined is given by

e = z1−α/2
σ√
n =⇒ n =

(z1−α/2σ

e

)2
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Confidence interval for a proportion

We made some inferences about the population mean µ in the
previous slides; let’s move onto a population proportion π.

Sample proportion estimator
A useful estimator of the proportion is the sample proportion

P̂ = X
n ,

for some Binomial random variable X such that X ∼ Bin(n, π).

Sample proportion estimate

An estimate of π is simply p̂ = x
n .

45 / 72
MATH2089/2859/2099/CVEN2002 Revision SeminarPresented by: Gerald Huang



Part I: Random variables Part II: Sampling distributions and Central Limit Theorem Part III: Confidence intervals Part IV: Hypothesis testing Part V: Analyses

Sampling distribution of P̂

Applying the Central Limit Theorem to P̂, we obtain the result

P̂ − π√
π(1− π)/n

a∼ N (0, 1).

Additionally, we can also say that

P̂ − π√
P̂(1− P̂)/n

a∼ N (0, 1).
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Deriving confidence intervals

1 Find a range of values that contains Z ∼ N (0, 1) with probability
1− α.

2 Apply the result of the CLT

P̂ − π0√
π(1− π)/n

a∼ N (0, 1).

3 Solve for π for which you have a 100(1− α)% confidence interval
for π to be[

p̂ − z1−α/2

√
p̂(1− p̂)

n , p̂ + z1−α/2

√
p̂(1− p̂)

n

]
.
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One-sided confidence intervals

We can also find one-sided large-sample confidence intervals for
the proportion π by finding0, p̂ + z1−α

√
p̂(1− p̂)

n

 and

p̂ − z1−α

√
p̂(1− p̂)

n , 1

 .
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Part IV: Hypothesis testing
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Before we begin... let’s discuss an important distribution in
statistics!
Student’s t-distribution
A random variable T is said to follow a tν distribution if for t ∈ R,

f (t) =
Γ
(
ν+1

2

)
√
νπΓ

(
ν
2
) (1 + t2

ν

)− ν+1
2

,

for some integer ν. Additionally, Γ is the gamma function.

ν is the degrees of freedom of the distribution!

Remark
As n→∞, tν → N (0, 1).
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Null and alternative hypotheses

(Definition) Null hypothesis
For the null hypothesis H0, we claim that our population
parameter takes some sort of value.

It is a statement that we generally believe to be true.

We say that H0 : µ = µ0.

(Definition) Alternative hypothesis
For the alternative hypothesis H1, we have some sort of ”new
claim” that we want to test.

We say that H1 : µ 6= µ0.
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Test statistic and null distribution

To test H0µ = µ0 using a random sample, when σ is known

Z = (X̄ − µ0)
σ/
√

n
a∼ N (0, 1).

To test H0 : µ = µ0 using a normal random sample, when σ is not
known:

T = X̂ − µ0

S/
√

n
∼ tν .

To test H0 : π = π0 using a random sample

Z = P̂ − π0√
π0(1− π0)/n

a∼ N (0, 1).
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P-value

(Definition) p-values
The P-value is used to measure how much evidence there is
against H0 in favour of the alternative hypothesis.

The smaller the p value, the more evidence against the null
hypothesis there is. If there’s enough evidence against H0, we
reject the null hypothesis.
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Set up of hypothesis testing

1 State the null and alternative hypotheses.
2 State the test statistic and distribution of H0.
3 Draw a conclusion based on the corresponding p-value or rejection

region.
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Inferring conclusions

At the end of the day, we want to determine whether the original
claim H0 was a lie or not. We can reach this using a rejection
region for a statistic.

It is a range of values for which we would reject the null hypothesis
at level α.
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Hypothesis test about µ if σ is known

Test statistic: z = x̄ − µ0

σ/
√

n

Rejection region (µ > µ0):
{

x̄ > µ0 + z1−α
σ√
n

}
.

Rejection region (µ < µ0):
{

x̄ < µ0 − z1−α
σ√
n

}
.

Rejection region (µ 6= µ0): x̄ 6∈
[
µ0 − z1−α/2

σ√
n
, µ0 + z1−α/2

σ√
n

]
.
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Hypothesis test about µ if σ is NOT known

Test statistic: t = x̄ − µ0

s/
√

n

Rejection region (µ > µ0): x̄ > µ0 + t1−α,n−1
s√
n

.

Rejection region (µ < µ0): x̄ < µ0 − t1−α,n−1
s√
n

.

Rejection region (µ 6= µ0):

x̄ 6∈
[
µ0 − t1−α/2,n−1

s√
n
, µ0 + t1−α/2,n−1

s√
n

]
.
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Hypothesis test about π

Test statistic: z = (p̄ − π0)√
π0(1− π0)/n

Rejection region (µ > µ0): p̄ > π0 + z1−α

√
π0(1− π0)

n .

Rejection region (µ < µ0): p̄ < π0 − z1−α

√
π0(1− π0)

n .

Rejection region (µ 6= µ0):

x̄ 6∈
[
π0 − z1−α/2

√
π0(1− π0)

n , π0 + z1−α/2

√
π0(1− π0)

n

]
.
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Example: (MATH2089, 2018S2 Q3c)
Assume Rugby New Zealand (the organising body for the sport)
want to be able to demonstrate that Rugby viewership is in excess
of 40% of New Zealanders, using a sample of size n.
What are the appropriate null and alternative hypotheses for this
test?

H0 : π = 0.4, Ha : π > 0.4.
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Example: (MATH2089, 2018S2 Q3c)
Assume Rugby New Zealand (the organising body for the sport)
want to be able to demonstrate that Rugby viewership is in excess
of 40% of New Zealanders, using a sample of size n.
What is the distribution of the sample proportion p̂, if the null
hypothesis is true?

N (0.4,
√

0.4(1− 0.4)/n) = N (0.4, 0.4899/
√

n).
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Assume Rugby New Zealand (the organising body for the sport)
want to be able to demonstrate that Rugby viewership is in excess
of 40% of New Zealanders, using a sample of size n.
Show that, for the relevant hypothesis test at the 0.05 significance
level, the rejection region for p̂ can be expressed as(

0.4 + 0.806√
n , 1

]
Rejection region is

p̂ > π0 + z1−α

√
π0(1− π0)

n = 0.4 + z1−0.05

√
0.4× 0.6

n . This
computes to

p̂ > 0.4 + 1.6449× 0.4899/
√

n ≈ 0.4 + 0.806/
√

n.
Hence our rejection region is(

0.4 + 0.806√
n , 1

]
.
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Part V: Analyses
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Linear Regression

Model the distribution of the random variable Y , conditional on the
predictor X , assuming

Y = β0 + β1x + ε.

The slope β1 and the intercept β0 are regression coefficients.
β0 is the mean of Y when X = 0.
Slope β1 is the change in mean of Y when X increases by 1.
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Least Squares Estimators

We often don’t know the true values of β0 and β1. So the next best
thing is to estimate them.

Notation

SXX =
n∑

i=1
(Xi − X̄ )2

SXY =
n∑

i=1
(Xi − X̄ )(Yi − Ȳ ).

Least squares estimators of β0 and β1

β̂1 = SXY
SXX

, β̂0 = Ȳ − SXY
SXX

X̄ .
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Assumptions based of the regression model

1 Conditional mean is a linear function of x . Otherwise it doesn’t
make any sense!

2 Each error term ei = yi − (β0 + β1xi ) are drawn independently of
one another!

3 Each error term have the same variance.
4 Each error term have been drawn from a normal distribution.
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Inferences about the true slope

β̂1 = SXY
SXX

=
∑

i

(xi − x̄)
SXX

Yi , where Y ∼ N (β0 + β1xi , σ).

Sampling distribution of β̂1 is

β̂1 ∼ N
(
β1,

σ√
SXX

)
.

Apply a hypothesis test on β̂1 with

H0 : β̂1 = 0, Ha : β̂1 6= 0.

Reject H0 if β̂1 is too different to 0. In other words, the rejection
region is

β̂1 6∈
[
β̂1 − tn−2;1−α/2

S√
SXX

, β̂1 + tn−2;1−α/2
S√
SXX

]
.
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Inferences about β0

β̂0 =
n∑

i=1

Yi
n − β̂1x̄ .

Sampling distribution of β̂1 is

β̂0 ∼ N

β0, σ

√
1
n + x̄2

SXX

 .
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Correlation

Recall that a regression returns a numerical relationship between
two random variables. On the other hand, a correlation quantifies
the strength of the linear relationship between X and Y . We can
show that the sample correlation coefficient is given by

r = Sxy√
Sxx Syy

.
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Analysis of Variance (ANOVA)
We use analysis of variance when dealing with k random samples,
where X̄i and Si are the sample mean and standard deviation of the
ith sample.

ANOVA model

Xij = µi + εij ,

where µi is the mean at the ith treatment and εij is an individual
random error component.

Assumptions

εij
i.i.d∼ N (0, σ).

Errors are normally distributed, are independent and have the same
variance.
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ANOVA hypotheses

Null hypothesis: H0 : µ1 = µ2 = · · · = µk .
Alternative hypothesis: Ha : not all means are the same.

We’re not saying that ALL means are different, but that at least
two means are different.
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Fisher’s F -distribution

Let fd1,d2;α be a value such that

P(X > fd1,d2;α) = 1− α,

where X follows an Fd1,d2 distribution with density

f (X ) = Γ((d1 + d2)/2)(d1/d2)d1/2xd1/2−1

Γ(d1/2)Γ(d2/2)((d1/d2)x + 1)(d1+d2)/2 .

Yeah nah, I don’t remember this at all! They would normally give
you a value by computing the command finv(α, d1, d2) for
quantiles and 1-fcdf(x,d1,d2).
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ANOVA test

Use the test statistic
f = msTr

msEr
,

where f follows a Fisher distribution with d1 = k − 1 and
d2 = n − k.

Reject H0 if
msTr
msEr

> fk−1,n−k;1−α,

where msTr is the treatment mean squared and msEr is the mean
squared error.
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