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Precursor: One variable derivatives

One variable derivatives
Recall that, for a single variable function,

f ′(x) = lim
h→0

f (x + h)− f (x)
h .

We can rewrite the h to denote ”some change in x” as

f ′(x) = lim
∆x→0

f (x + ∆x)− f (x)
∆x
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Partial differentiation

For two or more variables, this definition is insufficient. Instead, we
use partial derivatives.

Definition 1.1: Partial derivatives
Let z = f (x , y) be some function of two variables. Then

∂z
∂x = lim

∆x→0

f (x + ∆x , y)− f (x , y)
∆x ,

∂z
∂y = lim

∆y→0

f (x , y + ∆y)− f (x , y)
∆y .
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Computing partial derivatives

Consider the function f (x , y). Since x and y are independent of
each other, then x is a constant in terms of y and y is a constant
in terms of x .
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Computing partial derivatives

Example 1: Computing partial derivatives

Let f (x , y) = y
x + y . Find ∂f

∂x and ∂f
∂y .

∂f
∂x = − y

(x + y)2 ,
∂f
∂y = x

(x + y)2 .
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Multivariable chain rule

If z = f (x , y), x = x(t), y = y(t), then:

dz
dt = ∂z

∂x
dx
dt + ∂z

∂y
dy
dt

If z = f (x , y), x = x(u, v), y = y(u, v), then:

∂z
∂u = ∂z

∂x
∂x
∂u + ∂z

∂y
∂y
∂u ,

∂z
∂v = ∂z

∂x
∂x
∂v + ∂z

∂y
∂y
∂v
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Multivariable Chain Rule

Example 2
Suppose that z = x2 + 4xy where x = u3 ln v and y = uv2. Find
∂z
∂u and ∂z

∂v .

∂z
∂u = 2u3 ln(v)(8v2 + 3u2 ln(v)),

∂z
∂v = 2(2u4v2 + u6 ln(v) + 4u4v2 ln(v))

v
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Taylor series of single variable functions

The Taylor series of a single variable function f (x) at the point
(a, f (a)) is given by

f (x) ≈
∞∑

k=0

f (k)(a)
k! (x − a)k .

Extend this to multivariable functions...
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Taylor series of multivariable functions

The Taylor series of a multivariable function f (x , y) at the point
(a, b) is given by

f (x , y) = f (a, b) + ∂f
∂x (a, b)(x − a) + ∂f

∂y (a, b)(y − b)

+ 1
2!

[
∂2f
∂x2 (a, b)(x − a)2 + 2 ∂2f

∂x∂y (a, b)(x − a)(y − b)

+ ∂2f
∂y2 (a, b)(y − b)2

]
+ · · ·

Red signifies first derivative; Blue signifies second
derivative.
Very rarely does MATH2018/2019 deal with third derivative
and higher.
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Taylor series of multivariable functions

Example: (17S2, Q1ai)
Calculate the Taylor series expansion of the function
f (x , y) = ln(x + y) about the point (1, 0) up to and including
quadratic terms.

f (x , y) ≈ (x − 1) + y − 1
2
[
(x − 1)2 + 2y(x − 1) + y2

]
.
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Error approximation

Definition 1.4: Error approximation

|∆f | ≤
∣∣∣∣∂f
∂x

∣∣∣∣ |∆x |+
∣∣∣∣∂f
∂y

∣∣∣∣ |∆y |

This equation gives you the maximum error in f in terms of the
errors in x and y .
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Error approximation

Application of Error Approximation
The volume V of a cone with radius r and perpendicular height h
is given by V = 1

3πr 2h. Determine the maximum absolute error
and the maximum percentage error in calculating V given that
r = 5 cm and h = 3 cm to the nearest millimetre.
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Leibniz Rule

Definition 1.5: Leibniz Rule
d
dx

∫ v(x)

u(x)
f (x , t) dt =

∫ v(x)

u(x)

∂f
∂x dt + f (x , v(x))dv

dx − f (x , u(x))du
dx .

Gerald Huang MATH2018/2019 15 of 66



Part I: Functions of Several Variables Part II: Extreme values Part III: Vector field theory Part IV: Matrices

Leibniz Rule

Example: (18S2, Q1 iv)
You are given that ∫ ∞

0

1
α2 + x2 dx = π

2α
−1.

Use Leibniz’ theorem to find the following integral in terms of α∫ ∞
0

1
(α2 + x2)2 dx .
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Leibniz Rule

Example: (17S2, Q1 e)
You are given the following integral∫ a

0

1
(x2 + a2)1/2 dx = sinh−1(1).

Use Leibniz’ rule to evaluate∫ a

0

1
(x2 + a2)3/2 dx .
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Part II: Extreme values
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Critical points I

Back in 1131/1141... we found the critical points of a single
variable function through differentiation. But for multivariable
functions, we lose the meaning of differentiation.

Finding critical points
To find the critical points of multivariable functions,

1 Calculate ∂f
∂x = 0.

2 Calculate ∂f
∂y = 0.

3 Solve equations simultaneously.
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Critical points II (classification)

Define D = ∂2f
∂x2 ·

∂2f
∂y2 −

∂2f
∂x∂y at the point (a, b).

If D < 0, then (a, b) is a saddle point.

If D > 0 and ∂2f
∂x2 < 0, then (a, b) is a local maximum.

If D > 0 and ∂2f
∂x2 > 0, then (a, b) is a local minimum.

If D = 0, then the test is inconclusive.
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Critical points II

Example: (15S2, Q1d)
Find and classify the critical points of

h(x , y) = 2x3 + 3x2y + y2 − y .

Also give the function value at the critical points.
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Lagrange Multipliers

We may want to find critical points of a function f over a
constraint g . To do this, we apply the method of Lagrange
multipliers; we find the critical points that satisfy the equation
∇f = λ∇g and obtain the equations

∂f
∂x = λ

∂g
∂x

∂f
∂y = λ

∂g
∂y

...
g(x , y , . . . ) = 0.

Finally, we solve for possible values of our points and determine
which point(s) yield us with the maximum or minimum of f .
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Lagrange Multipliers

Example: (Lagrange multipliers)
Find the extreme value(s) of z = f (x , y) = x4 + y4 subject to the
condition x + y − 1 = 0.
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Part III: Vector field theory
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Introduction to vector field theory I

Vector field
A vector field assigns a vector to every point in some field.

−3 −2 −1 0 1 2 3

−2

0

2
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Introduction to vector field theory II

Scalar field
A scalar field assigns a scalar value to every point in some field.

f (x , y) = x2 + y2.
f (x , y , z) = x2 + 2xyz + z2.
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Vector fields and scalar fields

Let φ(x , y , z) be a scalar field and F(x , y , z) = F1i + F2j + F3k be
a vector field. Then

∇φ = gradφ = ∂φ

∂x i + ∂φ

∂y j + ∂φ

∂z k scalar→ vector

∇ · F = div F = ∂F1
∂x + ∂F2

∂y + ∂F3
∂z vector→ scalar

∇× F = curl F =

∣∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

F1 F2 F3

∣∣∣∣∣∣∣ vector→ vector

The vector differential operator ∇ is given by

∇ = ∂

∂x i + ∂

∂y j + ∂

∂z k.
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Gradient, Divergence and Curl

The divergence of a vector field tells us how much net flow is
coming out at a particular point. Positive divergence means that
there is more outflow than inflow.
The curl of a vector field tells us how much a particle rotates.

Let φ(x , y , z) be a scalar field and F be a vector field
F = F1i + F2j + F3k. Then

curl (gradφ) = 0.

That is, the curl of the gradient of a scalar field is zero.

A vector field is irrotational if ∇× F = 0. We shall see at a later
time that irrotational vector fields (ie conservative vector fields)
have some nice properties attached to it.
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Line integrals I

Line integrals calculate the work done in moving a particle P from
a point A to a point B along some path C through a force field F.

Work =
∫
C

F · dr =
∫
C

F1 dx + F2 dy + F3 dz .
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Line integrals II

Calculating line integrals
1 Parameterise the curve C.

Circles of radius r parameterise to x = r cos θ, y = r sin θ.
Lines parameterise to tA + (1− t)B.

2 Rewrite the expressions in terms of the new variable (noting
bounds and variable changes).

3 Express the line integral in terms of the new variable and
integrate as normal.

Gerald Huang MATH2018/2019 30 of 66



Part I: Functions of Several Variables Part II: Extreme values Part III: Vector field theory Part IV: Matrices

Line integrals II

Example: (15S2, Q3cii)
Given a vector field

F = 8e−x i + cosh z j− y2k

calculate the line integral
∫
C

F · dr where C is the straight line path
from A(0, 1, 0) to B(ln(2), 1, 2).

Gerald Huang MATH2018/2019 31 of 66



Part I: Functions of Several Variables Part II: Extreme values Part III: Vector field theory Part IV: Matrices

Line integrals III

Properties of line integrals
Let C be a path from A to B. If C′ is the same path but
starting at B and ending at A, then∫

C′
F · dr = −

∫
C

F · dr.

Let C be composed of two separate paths, C1 and C2. Then∫
C

F · dr =
∫
C1

F · dr +
∫
C2

F · dr
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Line integrals IV (conservative vector fields)

If ∇× F = 0, then F is conservative. Additionally, there exists a
scalar field φ(x , y , z) such that F = ∇φ(x , y , z); this is called the
scalar potential of F.

Line integrals on conservative fields
All line integrals are path-independent on conservative fields;
that is, we only care about the points A and B, and not how we
get from A to B.
Thus, ∫

C
F · dr = φ |B − φ |A .
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Line integrals IV (conservative vector fields)

Example: (18S1, Q1a)
Consider the scalar field

φ(x , y , z) = xez−1 + cos y

and let F = ∇φ.
What is ∇× F?
Hence, or otherwise, calculate the line integral

∫
C

F · dr along
the straight line path C from (1, 0, 1) to (5, π, 1).
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Line integrals IV (conservative vector fields)

Example: (18S2, Q4i)
Consider the vector field

F = yz2i + xz2j + (2xyz + 3)k.

Show that F is conservative by evaluating curl(F).
The path C in R3 starts at the point (3, 4, 7) and subsequently
travels anticlockwise four complete revolutions around the
circle x2 + y2 = 25 within the plane z = 7, returning to the
starting point (3, 4, 7). Using the first part or otherwise,
evaluate the work integral

∫
C

F · dr.

Gerald Huang MATH2018/2019 35 of 66



Part I: Functions of Several Variables Part II: Extreme values Part III: Vector field theory Part IV: Matrices

Double integrals I
A double integral calculates the volume of a surface over a region
Ω.
Double integrals on Ω
Let Ω be a region of integration and let f (x , y) be the function
over Ω. Then the double integral is written as

Volume =
∫∫

Ω
f (x , y) dA,

where dA is the infinitesimal area given by either dxdy or dydx .

Calculate the inside integral first and then the outside integral.
The outer limits must be constants.
The inner limits may be constants or functions of the other
variable.
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Double integrals II

Sometimes our region of integration Ω is expressed geometrically.
In this case, we will need to extract the integral limits ourselves.

Calculating double integrals
1 Sketch the region Ω.
2 Determine the appropriate limits of integration and determine

the order in which you would like to integrate.
3 Evaluate the inner integral and then evaluate the outer

integral.
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Double integrals II

Example: (double integrals)

Evaluate
∫∫

Ω
x dA where Ω is the region in the first quadrant

bounded by the parabola y = 4− x2 and the coordinate axes.
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Double integrals III (changing the order of integration)

Double integrals can be evaluated using either ordering dA = dxdy
or dA = dydx . However, one of these orderings can make the
integration process a lot less sufferable. Hence it is crucial to know
how to convert between

∫∫
Ω

f (x , y) dxdy and
∫∫

Ω
f (x , y) dydx .

Conversion between the two integrals
1 Sketch the region of integration.
2 Determine the new bounds with respect to the outer variable

first and then determine the constant bounds with respect to
the inner variable.

3 Swap the order of the variables and integrate.
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Double integrals III (changing the order of integration)

Example: changing the order of integration

Evaluate
∫ 1

−1

∫ 1

y2
2
√

xex2 dxdy by first changing the order of
integration.
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Double integrals III (changing the order of integration)

Example: changing the order of integration

Evaluate
∫ 1

−1

∫ 1

y2
2
√

xex2 dxdy by first changing the order of
integration.

Sketch the region of integration.

x

y

1

1

Ω
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Double integrals III (changing the order of integration)

Example: changing the order of integration

Evaluate
∫ 1

−1

∫ 1

y2
2
√

xex2 dxdy by first changing the order of
integration.

Determine the new bounds of integration by considering strips
parallel to the y axis.

x

y

1

1

Ω
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Double integrals III (changing the order of integration)

Example: changing the order of integration

Evaluate
∫ 1

−1

∫ 1

y2
2
√

xex2 dxdy by first changing the order of
integration.

Rewrite the integral in terms of the new order of integration∫ 1

−1

∫ 1

y2
f (x , y) dxdy =

∫ 1

0

∫ √x

−
√

x
f (x , y) dydx

and evaluate the integral.
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Double integrals III (changing the order of integration)

Example: (18S2, Q2ii)
Consider the double integral

I =
∫ 4

0

∫ 2
√

x
10x dydx .

Evaluate I with the order of integration reversed.
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Double integrals IV (Polar coordinates)

Sometimes, a certain region becomes simpler to deal with if we
express our integral in terms of an angle and magnitude;
introducing the conversion to polar coordinates!
This is especially useful if our region is something like a circle.

Changes to our integrals
dA = rdrdθ.
x = r cos θ, y = r sin θ.√

x2 + y2 = r .
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Double integrals IV (Polar coordinates)

Example: (Polar coordinate conversion)

Evaluate
∫∫

Ω
2xy dydx where Ω is the region in the first quadrant

between the circles of radius 2 and radius 5 centred at the origin.
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Areas and Volumes

The volume of a surface enclosed by a region Ω is given by

Volume =
∣∣∣∣∫∫

Ω
f (x , y) dA

∣∣∣∣ .
The area of the region can be found by setting f (x , y) = 1

Area =
∣∣∣∣∫∫

Ω
1 dA

∣∣∣∣ .
The volume between two surfaces is given by

Volume =
∣∣∣∣∫∫

Ω
(f1(x , y)− f2(x , y)) dA

∣∣∣∣ .
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Centre of Mass I

The density at a point (x , y) is represented by δ(x , y). The mass
of a lamina Ω is

M =
∫∫

Ω
δ(x , y) dA.

The first moment of Ω about the x and y axes respectively are

Mx =
∫∫

Ω
yδ(x , y) dA, My =

∫∫
Ω

xδ(x , y) dA.

The centre of mass Ω is (x̄ , ȳ) where

x̄ = My
M , ȳ = Mx

M .
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Centre of Mass II

The moments of inertia about the x and y axes are

Ix =
∫∫

Ω
y2δ(x , y) dA, Iy =

∫∫
Ω

x2δ(x , y) dA.
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Part IV: Matrices
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Revision from 1231/1241

Back in MATH1231/1241, you learned about...
Transposes and Inverses
Eigenvalues and Eigenvectors
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Transpose and Inverse I

Tranpose of matrix
Let A be an m × n matrix. Then the transpose of A, Aᵀ, is an
n ×m matrix where the rows and columns of A are interchanged.

If A =
(

1 2 3
4 5 6

)
, then Aᵀ =

1 4
2 5
3 6

.

Properties of transposes
(AB)ᵀ = BᵀAᵀ.
det(A) = det(Aᵀ).
(A + B)ᵀ = Aᵀ + Bᵀ.
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Transpose and Inverse II

Inverse of matrix
Let A be a square matrix. Then, if det(A) 6= 0, A will have an
inverse A−1 such that

AA−1 = A−1A = I.

Review your MATH1131/1141 notes (or review the
MATH1131/1141 seminar slides) to find methods of
calculating matrix inverses.

Properties of inverses
(AB)−1 = B−1A−1.
det(A−1) = det(A)−1.
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Eigenvalues and Eigenvectors I

For a square matrix A, an eigenvector v has a corresponding
eigenvalue λ that satisfies the equation

Av = λv.

For an n × n matrix, A will have n linearly independent
eigenvectors and n eigenvalues (not necessarily distinct).
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Eigenvalues and Eigenvectors II

Calculating the eigenvalues
1 Solve the characteristic equation det(A− λI) = 0 for λ.
2 The nonzero solutions to the characteristic equation are the

eigenvalues of A.

Calculating the eigenvectors
1 Substitute the value of λ into the expression A− λI, and row

reduce the matrix into row reduced form.
2 The vector is an eigenvector with corresponding eigenvalue λ.
3 Note: The number of zero rows tell you how many

eigenvectors to find; if there are two zero rows, then there are
two eigenvectors corresponding with the eigenvalue.
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Eigenvalues and Eigenvectors III (15S2, Q1b)

The matrix B is given by

B =

 0 −1 0
−1 0 0
0 0 2

 .
1 Show that the vector

v =

 1
−1
0


is an eigenvector of the matrix B and find the corresponding
eigenvalue.

2 Given that the other two eigenvalues of B are −1 and 2, find
the eigenvectors corresponding to these two eigenvalues.
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Eigenvalues and Eigenvectors IV

The trace of a matrix A is the sum of the diagonal entries of A.

For example the trace of the previous matrix

B =

 0 −1 0
−1 0 0
0 0 2


is 0 + 0 + 2 = 2.

Important property about traces and eigenvalues
The trace of a matrix A is the sum of the eigenvalues of A.
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Eigenvalues and Eigenvectors V (18S1, Q2b i)

A real symmetric 3× 3 matrix A has eigenvalues denoted by λ1,
λ2 and λ3.
A student is given the following information about A:

trace(A) = 0,
λ1 = 2 and λ3 = 4.

What is the value of the remaining eigenvalue, namely λ2?

λ2 = −6.
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Diagonalising a matrix I

An n × n matrix A is said to be diagonalisable if it has n distinct
eigenvalues. Note that if A is diagonalisable, then it may or may
not have n distinct eigenvalues.

If A is diagonalisable, then there exists a matrix Q such that

A = QDQ−1 ⇐⇒ D = Q−1AQ

where D is an n × n matrix with eigenvalue entries along the
diagonal. Q is the matrix with corresponding eigenvectors as
column vectors matching the eigenvalues in matrix D.
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Diagonalising a matrix II (20T1, Lab test 2 Q9)

The matrix A =

−5 6 0
−3 4 0
−3 3 1

 is diagonalisable with eigenvalues

−2, 1 and 1.

An eigenvector corresponding to the eigenvalue −2 is

2
1
1

.

Find an invertible matrix M such that M−1AM =

−2 0 0
0 1 0
0 0 1

.
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Special types of matrices I

Symmetric matrices
A square matrix A is said to be symmetric if

A = Aᵀ.

All eigenvalues of A are real.
There always exists a full set of eigenvectors.
Eigenvectors corresponding to different eigenvalues are
orthogonal.
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Special types of matrices II

Orthogonal matrices
A square matrix Q is said to be orthogonal if

QᵀQ = QQᵀ = I ⇐⇒ Q−1 = Qᵀ.

The columns of Q form an orthonormal set:
The columns are orthogonal to every other column in Q.
The columns are unitary: their magnitudes are 1.

If Q is a real orthogonal matrix, then det(Q) = ±1.
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Quadric surfaces I

We can express a standard quadric surface as

±x2

a2 ±
y2

b2 ±
z2

c2 = 1.

The shortest distance from the origin to the surface is a straight
line which can be calculated by taking the smallest denominator or
largest eigenvalue and setting the other variables to be zero.
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Quadric surfaces II

x2

a2 + y2

b2 = 1 is an ellipse in R2. (+,+)

x2

a2 −
y2

b2 is a hyperbola in R2. (+,−)

x2

a2 + y2

b2 + z2

c2 is an ellipsoid in R3. (+,+,+)

x2

a2 + y2

b2 −
z2

c2 is a hyperboloid of one sheet in R3.
(+,+,−)
x2

a2 −
y2

b2 −
z2

c2 is a hyperboloid of two sheet in R3.
(+,−,−)
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Quadric surfaces II

Example: (20T1, Lab test 1)
You are given that the matrix A has eigenvalues 1444, 722 and
722. Hence the equation of the surface in terms of the principal
axes X , Y and Z can be written as

1444X 2 + 722Y 2 + 722Z 2 = 17689.

Enter the shortest distance from the origin to the surface.
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Quadric surfaces II

Example: (20T1, Lab test 1)
You are given that the matrix A has eigenvalues 1444, 722 and
722. Hence the equation of the surface in terms of the principal
axes X , Y and Z can be written as

1444X 2 + 722Y 2 + 722Z 2 = 17689.

Enter the shortest distance from the origin to the surface.

Take the variable with the largest coefficient and set the other
variables to 0.
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Quadric surfaces II

Example: (20T1, Lab test 1)
You are given that the matrix A has eigenvalues 1444, 722 and
722. Hence the equation of the surface in terms of the principal
axes X , Y and Z can be written as

1444X 2 + 722Y 2 + 722Z 2 = 17689.

Enter the shortest distance from the origin to the surface.

Take the variable with the largest coefficient and set the other
variables to 0.

Y = 0, Z = 0.
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Quadric surfaces II

Example: (20T1, Lab test 1)
You are given that the matrix A has eigenvalues 1444, 722 and
722. Hence the equation of the surface in terms of the principal
axes X , Y and Z can be written as

1444X 2 + 722Y 2 + 722Z 2 = 17689.

Enter the shortest distance from the origin to the surface.

The shortest distance occurs when we solve for the variable.
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Quadric surfaces II

Example: (20T1, Lab test 1)
You are given that the matrix A has eigenvalues 1444, 722 and
722. Hence the equation of the surface in terms of the principal
axes X , Y and Z can be written as

1444X 2 + 722Y 2 + 722Z 2 = 17689.

Enter the shortest distance from the origin to the surface.

The shortest distance occurs when we solve for the variable.

1444X 2 = 17689 ⇐⇒ X = ±7
2 .
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Quadric surfaces III

But if we have xy , xz and yz terms, then we have a rotation of
axes. To account for this rotation, we can express the equation of
the surface as

xᵀAx = 1,

where A is a symmetric matrix and x is a vector in Rn. Then find
the eigenvalues and unitary eigenvectors of A; the eigenvectors
form the principal axes of the quadric curve. In this new
coordinate system, we attain a new curve which we can find the
shortest distance from the origin to the surface.

Gerald Huang MATH2018/2019 63 of 66



Part I: Functions of Several Variables Part II: Extreme values Part III: Vector field theory Part IV: Matrices

Quadric surfaces III

Example: (18S2, Q2iii)

A quadratic curve is given by the equation 7x2 + 6xy + 7y2 = 200.
1 Express the curve in the form

xᵀAx = 200

where x =
(

x
y

)
, and A is a 2× 2 symmetric matrix.

2 Find the eigenvalues and eigenvectors of the matrix A.
3 Hence, or otherwise, find the shortest distance between the

curve and the origin.
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System of ODEs

Using the analysis from quadric surfaces, we can use this same
process to simplify our working to find solutions to a system of
ODEs.
Method of solution

1 Write the system of ODEs into the form

y′ = Ay

where A is the coefficient of the ODEs.
2 Determine the eigenvalues λi and eigenvectors vi of A.
3 Solution is of the form

y =
n∑

k=1
ckvkeλk t .
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(A final example) System of ODEs

Solve the system of differential equations.

y ′1 = 2y1 + y2

y ′2 = −y1 + y3

y ′3 = y1 + y2 + y3.
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