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Some section Some subsection

Functions of Several Variables

Partial Differentiation

Formal Definition:

Fx(x, y) = lim
h→0

F (x + h, y)− F (x, y)

h

Fy(x, y) = lim
h→0

F (x, y + h)− F (x, y)

h

In partial differentiation, we seek to define the gradient as a
combination multiple ’partial derivatives’.

When differentiating with respect to each variable, treat all
other variables as constants
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Some section Some subsection

Functions of Several Variables

Partial Differentiation

Example: Suppose F (x, y) = x2y + 2y + 4. Find the respective
partial derivatives of F .

Fx: Treat y as constant and differentiate F with respect to x

Fx = 2xy

Fx: Treat x as constant and differentiate F with respect to y

Fy = x2 + 2
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Some section Some subsection

Functions of Several Variables

Tangential planes

In R2 the tangent line describes the gradient of a function
evaluated at a specific point.

Analogously in R3 we say that the tangent plane inherits
these same properties

Since the tangent plane is a surface of R3, its gradient is
described by the linear combination of 2 partial derivatives.
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Some section Some subsection

Functions of Several Variables

Tangential planes

If the surface has a tangent plane at the point (x0, y0, z0) then
the tangent plane is given by the equation:

z = z0 + Fx(x0, y0)(x− x0) + Fy(x0, y0)(y − y0)

and a normal vector to the surface at(x0, y0, z0) is given by:Fx(x0, y0)
Fy(x0, y0)
−1
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Some section Some subsection

Functions of Several Variables

Total Differential Approximation

The total differential approximation is given by:

∆F ≈ Fx(x0, y0)(x− x0) + Fy(x0, y0)(y − y0)

Where ∆F denotes the approximate change in output of a
function given its inputs

This formula is only effective for small changes in x and y

Intuitively, this means the point of approximation is very
close to the point of contact between the tangential plane
and surface

As ∆x = x− x0 and ∆y = y − y0 gets smaller, we obtain a
more precise approximation.
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Some section Some subsection

Functions of Several Variables
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Some section Some subsection

Multivariable Chain rule

Multivariable Chain rule

Suppose that F is a function of 2 variables and that x and y are
both functions themselves of one variable. Then

dF

dt
=

∂F

∂x

dx

dt
+

∂F

∂y

dy

dt

This is an example of a chain rule for a function of two
variables.

The idea here is that we compute each partial derivative F
followed by the derivative of the composite functions.
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Some section Some subsection

Multivariable Chain rule

Multivariable Chain rule

A chain diagram can help visualise how the multivarable
chain rule operates

Each arrow in the chain diagram points the function to each
of its variable

We then sum up all the paths that connect our desired
variables.
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Some section Some subsection

Multivariable Chain rule

Multivariable chain rule

Suppose that x(t) = 2t and y(t) = 3t + 1 are functions which
represent the displacement of a particle on the X − Y plane. The
height of the particle is given by H where

H(x, y) = 2x + 5y.

Find an equation to model the rate at which the particles height
changes.

MATH1231/41 Revision



Some section Some subsection

Multivariable Chain rule

Multivariable Chain rule

Now suppose F is a function of 1 variable, u, which however
is instead a function of 2 variables x and y

Observe how the behaviour in the chain diagram changes.

We can see that although there 2 paths in total, there is
only a single path from F → x and F → y
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Some section Some subsection

Multivariable Chain rule

Multivariable Chain rule

Yet again suppose F is a function of 2 variables, x and y,
which themselves are also functions of 2 variables s and t

We can see there are 2 possible paths to sum from F → s
and likewise 2 for F → t
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Some section Some subsection

Multivariable Chain rule

Multivariable Chain rule

We consider layer by layer, the variables of the outer
function. And for each variable that happens to also be a
function in and of itself, we repeat the procedure.

In doing so, we obtain an intuitive map that links all the
derivatives can be represented diagrammatically

Finally we sum all possible paths that link our desired
variables.
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Some section Some subsection

Integration Techniques

Powers of Sine and Cosine

Integrating of the form:
∫

sinm x cosn xdx
Split into 2 cases

(i) Either m is odd, n is even (and vice versa). Or they are
both odd.

(ii) Both m and n are even.
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Some section Some subsection

Integration Techniques

(i) Even-Odd (Odd-Odd) case

Overall Strategy: Convert as much of the odd powered
function using the Pythagorean identity: sin2 x + cos2 x = 1.
(Choose one if both are odd).

∫
sin3 x cos2 xdx

=

∫
sinx(1− cos2 x) cos2 xdx

=

∫
sinx(cos2 x− cos4 x)dx

=− 1

3
sin3 x +

1

5
sin5 x + C
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Some section Some subsection

Integration Techniques

(ii) Even-Even case

Overall Strategy: Reduce to linear form using trig identities:

1 + cos 2x = 2 cos2 x

1− cos 2x = 2 sin2 x

See separate solutions: ∫
sin2 x cos2 xdx
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Some section Some subsection

Integration Techniques

Product to Sum

When integrating multiple angles of sine and cosine we use the
following set of formulas.

1 sinA cosB = 1
2 [sin (A + B) + sin (A−B)]

2 cosA cosB = 1
2 [cos (A−B) + cos (A + B)]

3 sinA sinB = 1
2 [cos (A−B)− cos (A + B)]

This enables us to express a product as a sum instead. Thus,
now we can integrate them separately.
One may derive the formula’s through Euler’s identity or
simply through Trig expansion identities of Sine and Cosine
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Some section Some subsection

Integration Techniques

Product to Sum

Evaluate: ∫
cos 5x cos 3xdx

Identity 2 implies that:∫
cos 5x cos 3xdx =

1

2

∫
cos (5x− 3x) + cos (5x + 3x)dx

=
1

2

∫
cos (2x) + cos (8x)dx

=
sin 2x

4
+

sin 8x

16
+ C.
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Some section Some subsection

Integration Techniques

Reduction Formulae

The concept of Reduction Formulae arises from recursively
expressing an integral in terms of itself.

Effectively this reduces the problem into a trivial case, from
which we can backtrack to the initial integral

A nice trick is to follow the LIATE order
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Some section Some subsection

Integration Techniques

Reduction Formulae

L - Logarithm

I - Inverse Trig

A - Algebra

T - Trig

E - Exponential

Notice that at the top of the list, we have Logarithmic functions
which are the most difficult to integrate.
At the bottom we have, exponential functions which are the
easiest to integrate.
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Some section Some subsection

Integration Techniques

Example

Obtain a recursive relation for:∫
xnex

2
dx

MATH1231/41 Revision



Some section Some subsection

Integration Techniques

Trig and hyperbolic substitutions

The table summarises which substitutions to apply, depending on
the expression to be integrated.
Intuitively, we can verify these choices as the expression in
integrand simplifies after applying the associated substitution.
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Some section Some subsection

Integration Techniques

Example

Evaluate: ∫ √
1− x2dx
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Some section Some subsection

Integration Techniques

Partial Fraction decomposition

Generally speaking, a rational function is of the form

f(x) =
p(x)

q(x)

We say that f is proper if the degree of the denominator q
is greater than that of the numerator p.

We say that f is improper if the degree of the denominator
q is less than that of the numerator p.
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Some section Some subsection

Integration Techniques

Partial Fraction decomposition

If the rational function is improper. We use long division to
bring it into proper form.

When in proper rational form, the denominator can either
be reducible or irreducible.

If the denominator is irreducible, that means it has no real
linear factors.

In the next slide we will Partial fraction decomposition
for integrating such rational functions of proper form.
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Some section Some subsection

Integration Techniques

Partial Fraction decomposition

It can be shown that every proper rational function f can be
written as a unique sum of functions of the form:

A

(x− a)k

Bx + C

(x2 + bx + c)k

Where x2 + bx + c is irreducible
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Some section Some subsection

Integration Techniques

Partial Fraction decomposition

Case 1: The denominator splits into distinct linear factors.
Find the partial fraction decomposition of

7x− 1

(x− 3)(x + 1)

1 Since the denominator only has linear factors, we know the
decomposition only takes form 1.

2 7x−1
(x−3)(x+1) = A

x−3 + B
x+1

3 We then proceed to bring both sides to the same form by
common denominating and comparing numerators.

4 7x− 1 ≡ A(x + 1) + B(x− 3)

5 Congruent sign since the statement is true for all x ∈ R

MATH1231/41 Revision



Some section Some subsection

Integration Techniques

Comparing Numerators: 7x− 1 ≡ A(x + 1) + B(x− 3)

1 We can now evaluate the constants A and B by substituting
certain values of x.

2 x = −1 =⇒ −7− 1 = A(0) + B(−1− 3)

∴ B = 2

3 x = 3 =⇒ 21− 1 = A(3 + 1) + B(0)

∴ A = 5

7x− 1

(x− 3)(x + 1)
=

5

x− 3
+

2

x + 1
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Some section Some subsection

Integration Techniques

Partial Fraction decomposition

Case 2: The denominator has a repeated linear factor. Examples
of two such rational functions and the form of their partial
fraction decompositions are given below

x2 + 1

(x + 4)3
=

A

x + 4
+

B

(x + 4)2
+

C

(x + 4)3

x2 − 2

(x− 1)(x− 2)2
=

A

x− 1
+

B

x− 2
+

C

(x− 2)2

The important stage is identifying the decomposition form. After
that we simply follow the exact same strategy as indicated in the
previous slide.
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Some section Some subsection

Integration Techniques

Partial Fraction decomposition

Case 3: The denominator has an irreducible quadratic factor.
Examples of two such rational functions and the form of their
partial fraction decompositions are given below

x2 + x

(x2 + 9)3
=

Ax + B

x2 + 9
+

Cx + D

(x2 + 9)2
+

Ex + F

(x2 + 9)3

x3 − 2x + 4

(x− 2)(x2 + x + 1)2
=

A

x− 2
+

Bx + C

x2 + x + 1
+

Dx + E

(x2 + x + 1)2

As before, the constants appearing in each example can be
determined by algebra.
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Some section Some subsection

Ordinary Differential Equations

Separable ODE’s

As the name suggests, in separable ODE’s we aim to solve the
ODE by separating the variables

1 This is generally the simplest kind of ODE you will
encounter. All we need to do is use algebraic manipulation
to bring all like variables to a common side of the equation.

2 We then integrate both sides with respect to each variable

3 Solve an IVP, if necessary

4 Further algebraic manipulation may be required to obtain
the final solution.
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Some section Some subsection

Ordinary Differential Equations

Separable ODE’s

Given y(0) = 1 solve,

dy

dx
= y2(1 + x2)
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Some section Some subsection

Ordinary Differential Equations

1) First we separate the variables for integrating

1

y2
dy = (1 + x2)dx∫

1

y2
dy =

∫
(1 + x2)dx

−1

y
= x +

x3

3
+ C
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Some section Some subsection

Ordinary Differential Equations

2) Now solve the IVP by imposing initial conditions: y(0) = 1
that is when x = 0, y = 1

−1

1
= 0 +

0

3
+ C =⇒ C = −1

−1

y
= x +

x3

3
− 1
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Some section Some subsection

Ordinary Differential Equations

3) Manipulate to make desired variable the subject and obtain
the explicit solution.

y =
−1

x + x3

3 − 1

=
−3

3x + x3 − 3
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Some section Some subsection

Ordinary Differential Equations

First order linear ODE’s

These ODE’s can always be written in the form:

dy

dx
+ f(x)y = g(x)

1 Calculate the integrating factor h(x) = e
∫
f(x)dx

2 Multiply by integrating factor to obtain

h(x)
dy

dx
+ h(x)f(x)y = g(x)h(x).
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Some section Some subsection

Ordinary Differential Equations

First order linear ODE’s

1 Using the product rule we can rewrite the LHS:

d

dx
(h(x)y) = g(x)h(x)

2 Integrate both sides and then rearrange to make y the
subject
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Some section Some subsection

Ordinary Differential Equations

First order linear ODE”s

Solve
dy

dx
+ 3y = e−x
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Some section Some subsection

Ordinary Differential Equations

1) Since the ODE is already in the appropriate form the
integrating factor h(x) is given by

h(x) = e
∫
3dx = e3x

2) Multiplying the ODE by the integrating factor gives,

e3x
dy

dx
+ 3ye3x = e2x

3) Using the product rule backwards we obtain,

d

dx
(e3xy) = e2x
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Some section Some subsection

Ordinary Differential Equations

4) Integrating both sides yields,

e3xy =
1

2
e2x + C

5) Dividing by e3x to make y the subject,

y =
1

2
e−x + Ce−3x
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Some section Some subsection

Ordinary Differential Equations

Exact ODE’s

ODE’s of the form:

F (x, y)dx + G(x, y)dy = 0

are exact if,
∂F

∂y
=

∂G

∂x

The solution is given by:

H(x, y) = C

where H is a function satisfying the equations

∂H

∂x
= F and

∂H

∂y
= G
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Some section Some subsection

Ordinary Differential Equations

Exact ODE’s

Show the differential equation

dy

dx
= −2x + y + 1

2y + x + 1
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Some section Some subsection

Ordinary Differential Equations

1) Rewrite the differential equation in the appropriate form

(2x + y + 1)dx + (2y + x + 1)dy = 0

2) Writing F = 2x + y + 1 and G = 2y + x + 1. Then

∂F

∂y
= 1 =

∂G

∂x

3) Therefore, the ODE is exact and there exists a function H
satisfying

∂H

∂x
= F (x, y) = 2x + y + 1

∂H

∂y
= G(x, y) = 2y + x + 1.
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Some section Some subsection

Ordinary Differential Equations

4) Now, to Find H we integrate both Functions. Remember
when integrating with respect to a certain variable, treat all
other variable’s as constants

H(x, y) = x2 + xy + x + C1(y)

H(x, y) = y2 + xy + y + C2(x)

5) We know that integrating either of the partial derivative
functions F and G should yield the same primitive function H

H(x, y) = x2 + xy + y2 + x + y.

6) Hence the solution to the differential equation is given by

x2 + xy + y2 + x + y = C

MATH1231/41 Revision



Some section Some subsection

Ordinary Differential Equations

ODE’s by Substitution 1241

Use the substitution y(x) = xv(x) to solve the differential
equation

dy

dx
=

xy − y2

x2

NOTE: The most crucial step is to substitute out the original
differential expression. After that it is just a matter of algebraic
manipulation to bring it into a familiar ODE form.
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Some section Some subsection

Ordinary Differential Equations

ODE’s by Substitution 1241

To substitute out dy
dx we need to use to product rule,

dy

dx
=

d

dx
(xv) = v + x

dv

dx

Hence, our differential equation becomes,

v + x
dv

dx
=

x(xv)− (xv)2

x2

v + x
dv

dx
= v − v2

Thus we obtain the separable ODE

−dv

v2
=

dx

x
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Some section Some subsection

Ordinary Differential Equations

Modelling first order ODE’s

Some pointers when building a mathematical model:

1 Deduce what information needs to be extracted

2 Consider which variables are independent and dependant in
the system

3 Analyse the relationship and behaviour between theses
variables, which may be described by a differential equation.
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Some section Some subsection

Ordinary Differential Equations

Modelling first order ODE’s

A tank can hold 100 litres. Initially it holds 50 litres of pure
water. Brine, which contains 2 grams of salt per litre, is run in at
the rate of 3 litres per minute. The mixture, which is stirred
continuously, is run off at 1 litre per minute. Let x(t) denote the
mass of salt (in grams) present in the tank after t minutes.
Set up a differential equation in x and t to model the system
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Some section Some subsection

Ordinary Differential Equations

Modelling first order ODE’s

1) Identify what we want to find. In this case we want to derive
a formula for the mass of the salt present in the tank.
2) We know that the rate at which the salt’s concentration
changes is given by

dx

dt
= (rate of inflow) − (rate of outflow)

3) The rate of inflow is given as 2× 3 = 6g/min. First note the
total volume of liquid in the container is given by

50 + 3t− t = 50 + 2t
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Some section Some subsection

Ordinary Differential Equations

Modelling first order ODE’s

4) Therefore, the proportion of salt in the container is

x(t)

50 + 2t

5) Since, the rate of outflow of the liquid is 1L/min it follows
that the rate of outflow of salt is

x(t)

50 + 2t
× 1

6) Therefore our separable ODE is governed by

dx

dt
= 6− x(t)

50 + 2t
, x(0) = 0
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Chapter 3.5: Second order ODEs

Today’s plan

1 Chapter 3.5: Second order ODEs
Homogeneous solutions
Non-homogeneous solutions

2 Chapter 4: Taylor polynomials
Taylor series and theorem
Sequences and series

3 Chapter 5: Averages, arc length, speed, surface area
Average value of a function
Arc length of curves
Speed of a particle
Surface area
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Chapter 3.5: Second order ODEs Homogeneous solutions

Characteristic polynomial

Characteristic polynomial of second order ODEs

Suppose we have a second order differential equation:

ay ′′ + by ′ + cy = 0.

Then the characteristic polynomial takes the form:

aλ2 + bλ+ c = 0.

Notice the coefficients and degree of the λs. They match the degree
and coefficient of the differential equation.
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Chapter 3.5: Second order ODEs Homogeneous solutions

Characteristic polynomial

Characteristic polynomial - Distinct roots

When solving for λ in our characteristic polynomial and we have two
different real values for λ, then the homogeneous solution takes the
form:

yH(x) = c1 · eλ1x + c2 · eλ2x .
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Chapter 3.5: Second order ODEs Homogeneous solutions

Characteristic polynomial

Distinct roots

Solve the differential equation:

y ′′ + 5y ′ − 6y = 0.
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Chapter 3.5: Second order ODEs Homogeneous solutions

Solution for reference

We write the characteristic polynomial for the differential equation:

λ2 + 5λ− 6 = 0.

Solving for λ, we can factorise it as:

(λ+ 6)(λ− 1) = 0.

Since we have distinct roots, our solution takes the form:

yH(x) = c1 · e−6x + c2 · ex .
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Chapter 3.5: Second order ODEs Homogeneous solutions

Characteristic polynomial

Characteristic polynomial - Non distinct roots

When solving for λ in our characteristic polynomial and we have only
one real value for λ, then the homogeneous solution takes the form:

yH(x) = c1 · eλx + c2 · xeλx .
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Chapter 3.5: Second order ODEs Homogeneous solutions

Characteristic polynomial

Non distinct roots

Solve the differential equation:

y ′′ − 2y ′ + y = 0.
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Chapter 3.5: Second order ODEs Homogeneous solutions

Solution for reference

We write the characteristic polynomial for the differential equation:

λ2 − 2λ+ 1 = 0.

Solving for λ, we can factorise it as:

(λ− 1)2 = 0.

Since we have only one real root, our solution takes the form:

yH(x) = c1 · ex + c2 · xex .
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Chapter 3.5: Second order ODEs Homogeneous solutions

Characteristic polynomial

Characteristic polynomial - Complex roots

When solving for λ in our characteristic polynomial and we have
complex values for λ, then the homogeneous solution takes the
form:

yH(x) = eRe(λ)x (c1 cos (Im(λ)x) + c2 sin (Im(λ)x)) .
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Chapter 3.5: Second order ODEs Homogeneous solutions

Characteristic polynomial

Complex roots

Solve the differential equation:

y ′′ + y = 0.
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Chapter 3.5: Second order ODEs Homogeneous solutions

Solution for reference

We write the characteristic polynomial for the differential equation:

λ2 + 1 = 0.

Solving for λ, we have:
λ = ±i .

Since we have only complex roots, our solution takes the form:

yH(x) = e0x (c1 cos (x) + c2 sin (x))

which simplifies to

yH(x) = c1 cos(x) + c2 sin(x).
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Chapter 3.5: Second order ODEs Non-homogeneous solutions

Non-homogeneous equation

What if the RHS was not 0? This is a case of a non-homogeneous
differential equation. We shall learn techniques for finding solutions
to a non-homogeneous equation.
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Chapter 3.5: Second order ODEs Non-homogeneous solutions

Non-homogeneous equation

To solve a non-homogeneous equation, we first solve the
homogeneous equation by setting the RHS to 0 and find two
solutions using one of the three cases we saw before. We then look
for a particular solution.
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Chapter 3.5: Second order ODEs Non-homogeneous solutions

Non-homogeneous equation

Particular solution: exponential solutions

Suppose the RHS was of the form eax . Then we look for the
particular solution of the form:

yp = Aeax .

If yp is a solution to the homogeneous equation, then we multiply
our particular solution by x . We repeat this process until we have a
particular solution that’s not in the homogeneous solution.
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Chapter 3.5: Second order ODEs Non-homogeneous solutions

Non-homogeneous equation

Exponential solution

Solve the non-homogeneous second order differential equation:

y ′′ − 2y ′ + y = ex .
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Chapter 3.5: Second order ODEs Non-homogeneous solutions

Solution for reference - part 1

We solve the homogeneous case by finding the characteristic
polynomial. I’ll leave that to you to do. Assuming everything worked
out, you should end up with the homogeneous solution being:

yH(x) = c1 · ex + c2 · xex .

To find the particular solution, we look at the RHS. Since it’s an
exponential form, we guess:

yp = Aex .

But this is a solution in the homogeneous case. Multiplying by x
gives us:

yp = Axex .

But this is also a solution in the homogeneous case. Multiplying by
x gives us:

yp = Ax2ex .
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Chapter 3.5: Second order ODEs Non-homogeneous solutions

Solution for reference - part 2

The next step is to plug our guess for yp into the differential
equation to find A. Doing so gives us:

Aex(x2 + 4x + 2− 2x(x + 2) + x2) = ex .

Simplifying the expression gives:

2A = 1 =⇒ A = 1/2.

So the particular solution is:

yp =
1

2
x2ex .

So the general solution is:

y(x) = yH(x) + yp(x)

= c1 · ex + c2 · xex +
x2ex

2
.
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Chapter 3.5: Second order ODEs Non-homogeneous solutions

Non-homogeneous equation

Particular solution: trigonometric solutions

Suppose the RHS was of the form cos(ax) or sin(ax). Then we look
for the particular solution of the form:

yp = A cos(ax) + B sin(ax).

Note that we look for both cos and sin, not just either.
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Chapter 3.5: Second order ODEs Non-homogeneous solutions

Non-homogeneous equation

Trigonometric solution

Solve the second order differential equation:

y ′′ + y = cos(x).
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Chapter 3.5: Second order ODEs Non-homogeneous solutions

Solution for reference

Solving the homogeneous case gives:

yH(x) = c1 · cos(x) + c2 · sin(x).

To find the particular solution, we look at the RHS. Since it’s a
trigonometric form, we guess:

yp = A cos(x) + B sin(x).

But this is a solution in the homogeneous case. Multiplying by x
gives us:

yp = x (A cos(x) + B sin(x)) .

To find our solution, we substitute yp into our differential equation
and solve for A and B. Here, we end up with A = 0 and B = 1/2
after all that work, which gives us:

yp(x) =
1

2
x sin(x).
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Chapter 3.5: Second order ODEs Non-homogeneous solutions

Non-homogeneous equation

Particular solution: polynomial solutions

Suppose the RHS was of a polynomial form with degree r . Then we
look for the particular solution of a polynomial form with degree r :

yp = a0 + a1x + · · ·+ arx
r .
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Chapter 3.5: Second order ODEs Non-homogeneous solutions

Non-homogeneous equation: summary

To solve any non-homogeneous second order ODE:

1 Find the homogeneous solution, yH(x), by setting the RHS = 0
and building a characteristic polynomial.

2 Check the RHS and use the appropriate form of your particular
solution based on the RHS.

3 Check if the particular solution is already a homogeneous
solution. If it is, then multiply by x and check again. If not, we
move on.

4 Differentiate twice and substitute into the differential equation
to find any constants. This is yp(x).

5 The general solution is just the sum of the homogeneous and
the particular solution:

y(x) = yH(x) + yp(x).
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Chapter 4: Taylor polynomials Non-homogeneous solutions

Today’s plan

1 Chapter 3.5: Second order ODEs
Homogeneous solutions
Non-homogeneous solutions

2 Chapter 4: Taylor polynomials
Taylor series and theorem
Sequences and series

3 Chapter 5: Averages, arc length, speed, surface area
Average value of a function
Arc length of curves
Speed of a particle
Surface area
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Chapter 4: Taylor polynomials Taylor series and theorem

Taylor series

Definition 4.1.1: Taylor series

Suppose that f is differentiable n times at a. Then the Taylor
polynomial pn about x = a is defined as:

pn (x) = f (a)+f ′(a)(x−a)+
f (2)(a)

2!
(x−a)2+· · ·+ f (n) (a)

n!
(x−a)n.

1 Note that f (k)(x) simply means kth derivative of f .

2 We can also write it succinctly as:

pn(x) =
n∑

k=0

f (k)(a)

k!
(x − a)k .

3 If a = 0, we call this the Maclaurin series.
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Chapter 4: Taylor polynomials Taylor series and theorem

Taylor series

Example 4.1.1

Suppose that f (x) = ln x . Find the second order Taylor polynomial
for f about x = 1.

Since it’s second order, we only need to find its first and second
derivative. So:

f (x) = ln x , f (1) = 0.

f ′(x) =
1

x
, f ′(1) = 1.

f ′′(x) = − 1

x2
, f ′′(1) = −1.

So, by the Taylor series expansion, we have

p2(x) = f (1) + f ′(1) (x − 1) +
f ′′(1)

2!
(x − 1)2

= (x − 1)− 1

2
(x − 1)2 .
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Chapter 4: Taylor polynomials Taylor series and theorem

Taylor’s theorem

Theorem: Taylor’s theorem

Suppose that f has n + 1 continuous derivatives on an open interval
I containing a. Then, for each x ∈ I ,

f (x) = pn(x) + Rn+1(x).

For the course, we shall use Lagrange’s formula for the remainder,
which looks suspiciously like the next term of a Taylor expansion:

Rn+1 (x) =
f (n+1)(c)

(n + 1)!
(x − a)n+1 ,

where c is just some real number between a and x .
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Sequences

A sequence is a collection of numbers that may or may not follow a
simple rule. For example:

{1, 1, 2, 3, 5, etc.}

follows the rule an = an−1 + an−2 with a0 = 1 and a1 = 1. But

{1, 3, 2, 4, 6,−1, 0}

has no obvious rule.
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Sequences

Techniques for solving limits of sequences

Suppose that lim
n→∞ an and lim

n→∞ bn exist. Then

1 lim
n→∞ (an + bn) = lim

n→∞ an + lim
n→∞ bn.

2 lim
n→∞ (anbn) = lim

n→∞ an × lim
n→∞ bn.

3 lim
n→∞ (αan) = α lim

n→∞ an for every real number α.
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Sequences

Increasing and decreasing sequences

1 If an+1 > an for all n, then the sequence {an} is
monotonically increasing.

2 If an+1 < an for all n, then the sequence {an} is
monotonically decreasing.

3 If an+1 ≥ an for all n, then the sequence {an} is
nondecreasing.

4 If an+1 ≤ an for all n, then the sequence {an} is
nonincreasing.
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Chapter 4: Taylor polynomials Sequences and series

Sequences

(MATH1241) 17S2 - Question 4iii)

Consider the sequence {an} defined recursively by

an+1 =
a2n + π2

an + π
, a0 = 1.

The following Maple session may be useful.
> factor(Pi - (a[n]^2 + Pi^2)/(a[n] + Pi));

an (π − an)

an + π

a) Show by induction that an < π.
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Chapter 4: Taylor polynomials Sequences and series

Part a) - solution for reference

We begin by showing that a1 < π. The trick here is to see that
1 + π2 is less than π + π2 which can be factored into π(1 + π).
This will complete the proof for the base case.
Now, assume that this statement holds for some integer k . Then

ak < π

and

ak+1 =
(ak)2 + π2

ak + π

=
(ak)2 + πak − πak + π2

ak + π
.

We can split this up into two separate fractions.
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Part a) - solution for reference

Splitting it up into two separate fractions gives:

ak+1 =
(ak)2 − πak

ak + π
+
π2 + πak
ak + π

=
ak(ak − π)

ak + π
+
π(π + ak)

ak + π

= π +
ak(ak − π)

ak + π
.

Now, by our inductive hypothesis, we stated that ak < π so
ak − π < 0. Furthermore, by inspection, we see that ak > 0 so that
ak + π > 0. So the entire fraction is negative since we have a
positive × negative × positive. So we deduce that:

ak(ak − π)

ak + π
< 0.
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Part a) - solution for reference

So we deduce that
ak+1 < π + 0 = π.

By induction, we’ve successfully shown that, for all integers n,
an < π.
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Chapter 4: Taylor polynomials Sequences and series

Sequences

(MATH1241) 17S2 - Question 4iii)

Consider the sequence {an} defined recursively by

an+1 =
a2n + π2

an + π
, a0 = 1.

The following Maple session may be useful.
> factor(Pi - (a[n]^2 + Pi^2)/(a[n] + Pi));

an (π − an)

an + π

b) By considering an+1 − an, show that the sequence is
monotonically increasing.
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Part b) - solution for reference

Considering an+1 − an, we aim to show that an+1 > an or
an+1 − an > 0 for all n. Notice that

an+1 − an =
a2n + π2

an + π
− an

=
a2n + π2 − an (an + π)

an + π

=
π (π − an)

an + π

>
an (π − an)

an + π

= π − an+1 (from the Maple session)

> 0.

Thus, we have shown that an+1 − an > 0 so an+1 > an, and thus
{an} is a monotonically increasing sequence.
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Series

Finite series (partial sum)

A partial sum is a finite sum of a sequence of real numbers.

For example, a partial sum may look like this:

Sn = 1 + 2 + · · ·+ 10

which we can write as

Sn =
10∑
k=1

k .

MATH1231/1241 Revision



Chapter 4: Taylor polynomials Sequences and series

Series

More generally, we can write a partial sum using sequence notation.
Suppose we have a sequence {ak}, where ak denotes the kth term
of a sequence. Then the series can be expressed as

Sn = a0 + a1 + · · ·+ an =
n∑

k=0

ak .

But what happens when n→∞?
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Series

Infinite series

If we let n approach ∞, we end up with an infinite series. The
limiting behaviour ultimately depends on the behaviour of the
partial sums. If the partial sums converge to a number L, then the
infinite series converges to L and we write

∞∑
k=0

ak = L.

If the partial sums diverge, then the infinite series diverges.

We shall look at some examples of infinite series
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Infinite series

Geometric series

Suppose that r ∈ R. An infinite series is geometric if each
consecutive term shares a common ratio. We write geometric series
as

∞∑
k=0

rk = 1 + r + r2 + · · · .

This series will

1 converge if and only if |r | < 1.

2 diverge elsewhere.

MATH1231/1241 Revision



Chapter 4: Taylor polynomials Sequences and series

Infinite series

Harmonic series

The harmonic series is a special series. It holds the form

∞∑
k=0

1

k
.

We’ve seen that if a sequence of a partial sum converges, then the
series also converges. However, we will see later that, while the
sequence of partial sum is convergent, this is actually divergent.
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Tests for convergence

Test 1: The kth term test (test for divergence)

If ak 6→ 0, then
∑∞

k=0 ak diverges.

Note: this says nothing about whether a series converges; all it
says is that sequences in every convergent series will approach 0. If
the sequence does NOT approach 0, then the series diverges. If the
sequence approaches 0, we can’t tell whether or not the series
converges.
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Chapter 4: Taylor polynomials Sequences and series

Tests for convergence

(MATH1231) 18S2 - Question 4vi)

Suppose that
∞∑
n=0

an is a convergent series with an > 0 for all n.

a) State lim
n→∞ an.
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Chapter 4: Taylor polynomials Sequences and series

Tests for convergence

(MATH1231) 18S2 - Question 4vi)

Suppose that
∞∑
n=0

an is a convergent series with an > 0 for all n.

a) State lim
n→∞ an. 0

MATH1231/1241 Revision



Chapter 4: Taylor polynomials Sequences and series

Tests for convergence

Test 2: Integral test

Suppose that f (x) is a positive integrable function with f (k) = ak
for every positive k. Then one of two things may occur:

1 If
∫∞
1 f (x) dx converges, then so does

∞∑
k=1

ak .

2 If
∫∞
1 f (x) dx diverges, then so does

∞∑
k=1

ak .

Basically, if you THINK you can integrate ak , then you may want to
use the integral test.
We shall use this test to show that the harmonic series (from before)
actually diverges.
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Tests for convergence

Test 3: The comparison test

Suppose ak and bk are positive sequences such that ak ≤ bk for
every k. Then one of two things may occur:

1 If
∞∑
k=0

bk converges, then
∞∑
k=0

ak also converges.

2 If
∞∑
k=0

ak diverges, then
∞∑
k=0

bk diverges.

Note: You will most likely use this test in conjunction with test 4.
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Tests for convergence

Test 4: The p-series test

The series
∞∑
k=0

1

kp

converges if p > 1 and diverges if p ≤ 1.

This is akin to the p-integral test that you met back in 1A.
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Chapter 4: Taylor polynomials Sequences and series

Tests for convergence

(MATH1231/1241) 18S2 - Question 2iib)

Use appropriate tests to determine whether each of the following
series converges or diverges.

∞∑
n=1

sin2(2n)

n2

MATH1231/1241 Revision



Chapter 4: Taylor polynomials Sequences and series

Solution for reference

Here, we use the fact that sin2(2n) ≤ 1 for all n. So we shall
compare the series to 1/n2. So we shall observe that:

sin2(2n)

n2
≤ 1

n2

and by the p-series test, we see that 1/n2 converges. So by part 1
of the comparison test, we conclude that the series

∞∑
n=1

sin2(2n)

n2

converges.
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Chapter 4: Taylor polynomials Sequences and series

Tests for convergence

(MATH1241) Test 5: Limit form of the comparison test

Suppose that an and bn are positive sequences and suppose that

lim
n→∞

an
bn

= L, L 6= 0.

The series
∑

an converges if and only if
∑

bn converges.
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Chapter 4: Taylor polynomials Sequences and series

Tests for convergence

(MATH1241) 17S2 - Question 4iv)

Consider the sequence {an} given by

an =
cos n + n

n3 − e−n
.

Does the series
∞∑
n=1

an

converge? Give reasons for your answer.
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Chapter 4: Taylor polynomials Sequences and series

Solution for reference

We shall use the limit comparison test. Now, we note that as
n→∞, an → 1/n2. So we set bn = 1/n2. By the p-series test, we
know that bn converges. So since the limit of an/bn = 1, and bn
converges, then it follows that the series:

∞∑
n=1

an

converges.
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Chapter 4: Taylor polynomials Sequences and series

Tests for convergence

Test 6: Ratio test

Suppose that ak is an infinite series with positive terms and that

lim
k→∞

ak+1

ak
= r .

1 If r < 1, then
∑

ak converges.

2 If r > 1, then
∑

ak diverges.

TIP: If you see anything like an or n!, it may be worth considering
the ratio test because things simplify very nicely.
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Tests for convergence

Test 7: Alternating series

A series alternates if each successive term switches sign. An
alternating series of the form

∞∑
k=1

(−1)kak

converges if it meets all of the criteria:

1 ak ≥ 0.

2 ak ≥ ak+1.

3 limk→∞ ak = 0.
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Chapter 4: Taylor polynomials Sequences and series

Tests for convergence

(MATH1231/1241) 18S2 - Question 2ii)

Use the appropriate tests to determine whether each of the
following series converges or diverges.

∞∑
n=2

(−1)n
n

4n2 − 3
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Solution for reference

Since this series is of the form, we naturally try the alternating
series test. We shall check to see if each of the dot points are
satisfied. It follows that parts 1 and 3 are satisfied, so we only need
to check part 2.
To check part 2, consider the function

f (x) =
x

4x2 − 3
.

Taking the derivative, we get:

f ′(x) =
4x2 − 3− 8x2

(4x2 − 3

=
−3− 8x2

(4x2 − 3)2
.

This is clearly decreasing for all x , so the series is decreasing which
implies that ak ≥ ak+1. We conclude that the series converges.
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Tests for convergence

QUIZ TIME!

Which test would you use for the following series?

∞∑
k=1

k

k4 + 1
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Chapter 4: Taylor polynomials Sequences and series

Tests for convergence

QUIZ TIME!

Which test would you use for the following series?

∞∑
k=1

k

k4 + 1
(COMPARISON + P-SERIES)
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Tests for convergence

QUIZ TIME!

Which test would you use for the following series?

∞∑
k=3

k + 1

k − 2
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Tests for convergence

QUIZ TIME!

Which test would you use for the following series?

∞∑
k=3

k + 1

k − 2
(K-TH TERM TEST)

In fact, this series diverges since the limit is 1 and not 0!
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Tests for convergence

QUIZ TIME!

Which test would you use for the following series?

∞∑
k=3

1

k(ln k)2
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Tests for convergence

QUIZ TIME!

Which test would you use for the following series?

∞∑
k=3

1

k(ln k)2
(INTEGRAL TEST)

Let f (x) = 1/(x(ln x)2). If we use a u-substitution, where u = ln x ,
then we can turn the series into an integral we can compute!
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Absolute and conditionally convergent

We shall now divert (hehe) our attention to convergent series. We
can class convergence into two classes.
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Absolute and conditionally convergent

Absolute convergence

A series
∑

ak is said to be absolute convergent if the series∑
|ak |

is convergent.
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Absolute and conditionally convergent

Conditionally convergence

A series
∑

ak is said to be conditionally convergent if the series
converges but ∑

|ak |

is divergent.

For the rest of the chapter, we shall consider absolute convergence
more than conditionally convergent.
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Chapter 4: Taylor polynomials Sequences and series

Interval of convergence

We shall consider the interval where the series is absolute
convergent, meaning ∑

|ak |

converges. What follows is a systematic method to calculating the
”interval of convergence”. In other words, we find the possible
values for x so that the series will DEFINITELY converge.
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Interval of convergence

Method to finding an interval of convergence

Suppose we have some power series of the form:

ak(x − α)k

We shall apply the ratio test on the absolute value of the series.

The ratio test tells us that whatever is inside the absolute value
SHOULD be less than 1 for convergence to exist. We shall see this
in action.
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Interval of convergence

(MATH1231/1241) 16S2 - Question 1vi)

Determine the open interval of convergence of the power series

∞∑
n=1

2n

(n2 − n + 1)3n
(x − 3)n.
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Solution for reference

We shall use the ratio test, but we take the limit as n→∞. Doing
so gives us:

r = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ 2n+1(x − 3)n+1

((n + 1)2 − (n + 1) + 1)3n+1
· (n2 − n + 1)3n

2n(x − 3)n

∣∣∣∣
= lim

n→∞

∣∣∣∣2(x − 3)(n2 − n + 1)

3((n + 1)2 − n)

∣∣∣∣
=

2

3
|x − 3| .

By the ratio test, we need r < 1. So we aim to solve

2

3
|x − 3| < 1

to find the interval of convergence. The previous equation is also
called the radius of convergence, where the radius is 3/2.
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Chapter 4: Taylor polynomials Sequences and series

(MATH1241) Interval of convergence at end points

We shall now extend this to a (closed) interval of convergence. We
solve the open interval of convergence by applying the ratio test
and taking the limit of the power.
To find the convergence at the end points, we substitute the end
points into the power series and determine whether it converges or
diverges.
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(MATH1241) Interval of convergence at end points

(MATH1241) 17S2 - Question 4iv)

Consider the sequence {an} given by

an =
cos n + n

n3 − e−n
.

b) Determine the interval of convergence of the power series

∞∑
n=1

an(x + 2)n.

You may use the fact that the sequence {an} is monotonically
decreasing.
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Solution for reference - part 1

We use the ratio test taking n→∞ to find the OPEN interval of
convergence. I will let you do it at your own accord. If you do it
correctly, you should end up with the following radius of
convergence:

|x + 2| < 1.

So the end points are x = −3 and x = −1. We now determine
whether the series converges at the end points. Plugging in x = −3
into the power series gives:

∞∑
n=1

an(−1)n.

This is an alternating series, so we shall apply the alternating series
test. Part 2 is already given to us, so we only need to check the first
and third criteria. The third criteria can easily be checked to be 0,
so that is satisfied. It follows that part 1 is also satisfied, so it
converges at x = −3.
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Solution for reference - part 2

At x = −1, we have the series:

∞∑
n=1

an

which converges from a previous question. So the interval of
convergence is the closed [−3,−1].
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Chapter 5: Averages, arc length, speed, surface area Sequences and series

Today’s plan

1 Chapter 3.5: Second order ODEs
Homogeneous solutions
Non-homogeneous solutions

2 Chapter 4: Taylor polynomials
Taylor series and theorem
Sequences and series

3 Chapter 5: Averages, arc length, speed, surface area
Average value of a function
Arc length of curves
Speed of a particle
Surface area
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Chapter 5: Averages, arc length, speed, surface area Average value of a function

Average value of a function

Definition

Suppose that f is integrable on a closed interval [a, b]. Then the
average value f̄ of f on the interval [a, b] is:

f̄ =
1

b − a

∫ b

a
f (x) dx .
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Arc length for a parameterised curve

Suppose that C can be expressed with a parameter t:

C = {(x(t), y(t)) ∈ R2 : a ≤ t ≤ b}.

Then the arc length ` is expressed as:

Arc length of parameterised curve

` =

∫ b

a

(√
(x ′(t))2 + (y ′(t))2

)
dt.
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Chapter 5: Averages, arc length, speed, surface area Arc length of curves

Arc length for a graph

Suppose that a function is expressed in terms of one variable.
Then the arc length ` can be expressed as one of the following:

Arc length of function y = f (x)

` =

∫ b

a

(√
1 + (f ′(x))2

)
dx .

Arc length of function x = f (y)

` =

∫ d

c

(√
1 + (f ′(y))2

)
dy .
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Speed of a particle

Speed of particle formula

The speed v(t) of a particle at any time t is given by

v(t) =
√

(x ′(t))2 + (y ′(t))2.
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Surface area

Surface area when rotated about x axis

The surface area of revolution of y = f (x) when rotated about the
x axis is given by

SA =

∫ b

a
2πf (x)

√
1 + (f ′(x))2 dx .

Surface area when rotated about x axis

The surface area of revolution of x = f (y) when rotated about the
y axis is given by

SA =

∫ d

c
2πf (y)

√
1 + (f ′(y))2 dy .
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