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Introduction to Vectors

Chapter 1: Introduction to vectors

Algebraic interpretation of vectors

e Addition of vectors by component:

o Add each component together and express them in vector
form.

1 3 4
O & (22 + (é) = (6) . o
o e.g. (1i+2))+(3i+4j)=4i+6j
@ Subtraction of vectors by component:
e Subtract the components individually and then express them
in vector form.

o eg (1)-()=0)

o e.g. (3i+4j) - (1i+2j)=2i+2j
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Introduction to Vectors Interpretations of vectors

Chapter 1: Introduction to vectors

Algebraic interpretation of vectors

o Multiplication of a vector by a non zero scalar:

e The non zero scalar can be expanded into each of the
components.
1 -2

e.g- ~2-(3) = (5)
We can also factor out the highest common factor.

3 1
eg (g)=3-(3)
We’ll develop these ideas a little bit further when we start
looking at lines and planes.
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Introduction to Vectors Interpretations of vectors

Chapter 1: Introduction to vectors

Geometric interpretation of vectors

o Geometrically, a vector is a ray that only requires a
direction and a magnitude.
o Use tail-to-tip method to geometrically add and subtract
two vectors.
e Take a vector a and trace the vector from the origin.

o From the tip (where the arrow would be), trace your second
vector b. The result from the origin is a + b.
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Introduction to Vectors Lines

Chapter 1: Introduction to vectors

Lines

o Lines can be represented in two ways: parametrically and
with Cartesian coordinates.

o Parametrically: start with a point on the line a and then
walk some distance in the direction of the line:

S={xeR":x=a+Av, AeR}
o Cartesian coordinates: these appear in the form:

r1—a1 To—ao Tp — Qn
S: Rn: = = — e = —
{XE Ty by b }
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Introduction to Vectors Lines

Chapter 1: Introduction to vectors

Lines in parametric form

o We saw the parametric representation of a typical line
passing through a point and parallel to a vector.

—
o We can also express a line segment AB parametrically as:

S={xeR":x=a+A(b-a), Ae[0,1]}

| \

A note about parametric lines!

If you get a different parametric representation, don’t worry!
You could still be correct. Lines have an infinite number of
parametric representations. For example, these two describe the
same line. See if you can find the equation of the line!

() () ()
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Introduction to Vectors

Chapter 1: Introduction to vectors

Lines in parametric form - example
MATH1131/1141 2016 Semester 1 Q2vi a)
The points A and B have position vectors

1 3
a=|0]| and |4].
1

7

a) Find a parametric vector equation of the line ¢ passing
through A and B.
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Introduction to Vectors Lines

Chapter 1: Introduction to vectors

We note that the parametric representation of a line is given by:
f=a+Av, XeR.

For convenience, we’ll just choose our a vector to be the a in the
question. But it’s perfectly fine to pick b.
Our v is just the line segment AB. This will give us:

l{=a+X(b-a), XeR

1 3 1
=10l+AX|]4]-]0

1 7 1

1 2
=|0|+X|4

1 6
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r—a

The Cartesian form could appear as the following:

b

_y-c
-

«O>» «Fr «=>» = = A



Introduction to Vectors Lines

Chapter 1: Introduction to vectors

Lines - From Cartesian to parametric - part one

For this part, we consider the standard Cartesian equation:
ax +by=c

To convert to parametric, we:
e Set one variable to be the parameter .
o Rewrite the other variable in terms of the parameter.

o Express your answer in vector form.
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Introduction to Vectors

Chapter 1: Introduction to vectors

Lines - From Cartesian to parametric - part one - example

Consider the Cartesian equation of a line:

0:2x — 4y = 6.

Find a parametric equation of the Cartesian equation /.
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Introduction to Vectors

Chapter 1: Introduction to vectors

Lines - From Cartesian to parametric - part one - example

Consider the Cartesian equation of a line:

{:2x — 4y = 6.

Find a parametric equation of the Cartesian equation /.
Let’s set y to be our parameter \.
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Introduction to Vectors

Chapter 1: Introduction to vectors

Lines - From Cartesian to parametric - part one - example

Consider the Cartesian equation of a line:

{:2x — 4y = 6.

Find a parametric equation of the Cartesian equation /.

Let’s set y to be our parameter A. Then we have 2z — 4\ = 6.
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Introduction to Vectors

Chapter 1: Introduction to vectors

Lines - From Cartesian to parametric - part one - example

Consider the Cartesian equation of a line:

0:2x—4y = 6.

Find a parametric equation of the Cartesian equation £.

Let’s set y to be our parameter A. Then we have 2z —4X = 6. We
then aim to write = in terms of our parameter.
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Introduction to Vectors

Chapter 1: Introduction to vectors

Lines - From Cartesian to parametric - part one - example

Consider the Cartesian equation of a line:

0:2x—4y = 6.

Find a parametric equation of the Cartesian equation £.

Let’s set y to be our parameter A. Then we have 2z —4X = 6. We

:c:6+24)\=3+2)\,

then aim to write = in terms of our parameter. This gives us:
AeR.
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Introduction to Vectors

Chapter 1: Introduction to vectors

Lines - From Cartesian to parametric - part one - example

Consider the Cartesian equation of a line:

{:2x -4y = 6.

Find a parametric equation of the Cartesian equation £.

Let’s set y to be our parameter A. Then we have 2z —4A = 6. We
6 +4X
xr =

then aim to write x in terms of our parameter. This gives us:

=3+2\, XeR.
So, our parametric representation COULD be:

()-3)-6)6)

[m]

5
MATH1131/1141 Revision

Gerald Huang, Yasin Khan



Introduction to Vectors

Chapter 1: Introduction to vectors

Lines - From Cartesian to parametric - part two - example

Modified version of class test 1 from 2014 Semester 1 Version 2b
Consider the line ¢ in R? with Cartesian equation:
r-2 y+1 2z+3

3 4

1
Find a parametric equation of the line £.
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Introduction to Vectors

Chapter 1: Introduction to vectors

Lines

Lines - From Cartesian to parametric - part two - example

Modified version of class test 1 from 2014 Semester 1 Version 2b
Consider the line ¢ in R? with Cartesian equation:
z-2 y+1 =z+3

3 4

1
Find a parametric equation of the line £.

A

Setting the entire equation equal to our parameter A,

we get:
~r-2 y+1 243
3 41
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Introduction to Vectors Lines

Chapter 1: Introduction to vectors

Lines - From Cartesian to parametric - part two - example

Modified version of class test 1 from 2014 Semester 1 Version 2b

Consider the line ¢ in R? with Cartesian equation:

x-2 y+1 2z+3
3 4 17

Find a parametric equation of the line £.

Let’s solve for z, y and z. If \ = %‘2 =4t 243 hen:

4 1
_2
)\=x =>zx=3\+2
1
A:yz Sy=dr-1
P R
1 o
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Introduction to Vectors

Chapter 1: Introduction to vectors

Lines - From Cartesian to parametric - part two - example

Modified version of class test 1 from 2014 Semester 1 Version 2b

Consider the line ¢ in R? with Cartesian equation:

z-2 y+1 2z+3

4

3 1
Find a parametric equation of the line £.

So our parametric representation is:

x 2+ 3\ 2 3
yl=1-1+4X|=1-1]+X]|4], XeR.
z -3+ -3 1
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Introduction to Vectors Lines

Chapter 1: Introduction to vectors

Lines - From parametric to Cartesian

Here, we’ll consider a simple vector in R3. But this method
works for any dimension. We consider the equation:

x Zo I
yl=lvo |+ | wn
% 20 21

To convert to Cartesian, we:

e write each of the components separately and solve for the
parameter A.

e equate all of the equations to form the alternative form of a
line.
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So this will give us:

x:x0+>\x1=»)\=m_x0
1
)

y=yo+ iy = A=Y
n

z:zo+)\zl=»)\=z_zo
Z1

Finally, equating all of the equations give us the alternatively

form of a line:
T-To Y-Yo 2= 20

X1 Y1 21
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Chapter 1: Intr

Lines - From parametric to Cartesian - example
Find the Cartesian form for the line:

2 3
x=|-3|+A|5],
1

A eR.
6
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Introduction to Vectors

Chapter 1: Introduction to vectors

Lines - From parametric to Cartesian - example
Find the Cartesian form for the line:

2 3
x=|-3]1+A|5], AeR.
1 6
Writing each component separately (and solving for the
parameter) gives us:
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Introduction to Vectors

Chapter 1: Introduction to vectors

Lines - From parametric to Cartesian - example
Find the Cartesian form for the line:

2 3
x=|-3|+A|5], AeR.
1 6
Writing each component separately (and solving for the
parameter) gives us:

x:2+3)\:>)\:xT_2
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Introduction to Vectors

Chapter 1: Introduction to vectors

Lines - From parametric to Cartesian - example
Find the Cartesian form for the line:

2 3
x=|-3|+A|5], AeR.
1 6
Writing each component separately (and solving for the
parameter) gives us:

)
=243 = A= =
3
=345\ A= L3
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Introduction to Vectors

Chapter 1: Introduction to vectors

Lines - From parametric to Cartesian - example

Find the Cartesian form for the line:

2 3
x=|-3]l+X|5], AeR.
1 6
Writing each component separately (and solving for the
parameter) gives us:

:L‘=2+3)\=»)\=xT_2

y=-3+5\=> A=

w

z=1+6)\:>)\=z_1
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Introduction to Vectors

Chapter 1: Introduction to vectors

Lines - From parametric to Cartesian - example
Find the Cartesian form for the line:

2 3
x=|-3|+A|5], AeR.
1 6
Let’s eliminate the parameter! X is the same in all of the
equations.

Gerald Huang, Yasin Khan

[m]

5
MATH1131/1141 Revision



Introduction to Vectors

Chapter 1: Introduction to vectors

Lines - From parametric to Cartesian - example
Find the Cartesian form for the line:

2 3
x=|-3|+A|5], AeR.
1 6
Let’s eliminate the parameter! X is the same in all of the
equations. So:
A

r—-2 y+3 z-1
-

6
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Introduction to Vectors

Chapter 1: Introduction to vectors

Lines - From parametric to Cartesian - example

Find the Cartesian form for the line:

2 3
x=|-3|+A|5], AeR.
1 6
Let’s eliminate the parameter! X is the same in all of the
equations. So:
A

r=2 y+3 z-1
=5 - =

5
Voila! Our Cartesian equation!

6
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Introduction to Vectors Planes

Chapter 1: Introduction to vectors

Introduction to Planes

o Like lines, planes can also be represented parametrically and
with Cartesian coordinates.

o Parametrically: start with a point a and then start
walking some distance in two directions:

S={xeR":x=a+ vy +puve, A\ peR}
o Cartesian: we represent any plane as:

ax + by +cz =d.
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Introduction to Vectors Planes

Chapter 1: Introduction to vectors

Planes in parametric form - example
MATH1131 2015 Semester 2 Q3iv

Find a vector parametric form for the plane passing through the
three points with position vectors

1 0 -2
21,13 and | 1
-1 1 -5
[m] (=) = =
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Introduction to Vectors Planes

Chapter 1: Introduction to vectors

Planes in parametric form - example

MATH1131 2015 Semester 2 Q3iv
Find a vector parametric form for the plane passing through the
three points with position vectors

1 0 -2
2 1,]13] and | 1
-1 1 -5

Let’s begin by walking up to a point. We’ll walk up to the point
(1,2,-1)7.

=] F
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Introduction to Vectors Planes

Chapter 1: Introduction to vectors

Planes in parametric form - example

MATH1131 2015 Semester 2 Q3iv
Find a vector parametric form for the plane passing through the
three points with position vectors

1 0 -2
2 1,]13] and | 1
-1 1 -5

Let’s begin by walking up to a point. We’ll walk up to the point
(1,2,-1)7T.

Now, from where we’re standing, we want to be able to walk to
the second and third points.

] = =
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Introduction to Vectors Planes

Chapter 1: Introduction to vectors

Planes in parametric form - example
MATH1131 2015 Semester 2 Q3iv
Find a vector parametric form for the plane passing through the

three points with position vectors

1 0 -2
21,13] and | 1
-1 1 -5

To get to the second point, we can find the direction we want to
walk in by taking the first vector from the second vector:

0 1 -1
31-121=]1
1 -1 2

] = =
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Introduction to Vectors Planes

Chapter 1: Introduction to vectors

Planes in parametric form - example
MATH1131 2015 Semester 2 Q3iv
Find a vector parametric form for the plane passing through the

three points with position vectors

1 0 -2
21,13] and | 1
-1 1 -5

Similarly, to get to the third point, we can find the direction we
want to walk in by taking the first vector from the third vector:

-2 1 -3
1|-12|=[-1
-5) \-1) \-4

] = =
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Introduction to Vectors Planes

Chapter 1: Introduction to vectors

Planes in parametric form - example
MATH1131 2015 Semester 2 Q3iv

Find a vector parametric form for the plane passing through the
three points with position vectors

1 0 -2
2 1,]13] and | 1
-1 1 -5

Then the parametric form becomes:

1 -1 3
x=]2 |+l 1 |+p]ll]), ApeR.
-1 2 4

] = =
Gerald Huang, Yasin Khan MATH1131/1141 Revision

it
e



Introduction to Vectors Planes

Chapter 1: Introduction to vectors

Planes - From Cartesian to parametric

Say that we have a plane of the form:

ax +by +cz =d.

@ We find three points on the plane.

@ From these points that we find, we set one point as a pivot
point.

© We then find the direction vectors to get our parametric
vector form of a plane.
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Introduction to Vectors Planes

Chapter 1: Introduction to vectors

Planes - From Cartesian to parametric

Say that we have a plane of the form:
ax +by +cz =d.

Alternatively, we can:
@ Write one variable in terms of the other. You will then have
two degrees of freedom.
© Then we can find the parametric equation of the vector form
quite easily!

We shall do an example to demonstrate these two different
methods.
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Planes - From Cartesian to parametric

Find a parametric vector form of the plane

example (Method 1)
4.’,(,‘1 —3xo + 6.’1:3 = 12,

«O>» «Fr «=>r «E)» = Q>




Introduction to Vectors Planes

Chapter 1: Introduction to vectors

For reference:

We shall begin by finding just three points on the plane. The
easiest points are at (0,0,23), (0,22,0) and (x1,0,0). So the
three points are:

3 0 0
0],1-41.10
0 0 2

Fixing the first vector to be our point of reference, we can find
the direction vectors by subtracting the other vectors from the
first vector. So the direction vectors become:

0 3\ [-3\ [0\ (3\ (-3
—al-{o|=[-4].[o|-]0]=]0
0 0 0/ \2/ \o 2
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For reference:

vector form:

3

-3

Thus, we can express the Cartesian equation as a parametric
x=|0|+A|-4]|+p

-3
01, MNpeR.
0 0 2
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Planes - From Cartesian to parametric

Find a parametric vector form of the plane

example (Method 2)
4.’,(,‘1 —3xo + 6.’1:3 = 12,

«O>» «Fr «=>r «E)» = Q>




Introduction to Vectors Planes

Chapter 1: Introduction to vectors

For reference:
Alternatively, we can rewrite z1 in terms of 2o and x3 by solving
for 1 in terms of xo and x3. Doing so gives us

1
Tl = 1(12+33§‘2 —6.7}3).

Then, our parametric equation becomes:

I %1(12+3.7}2—6$3)
X=1T2]|= i)
T3 T3

This boils down to the parametric equation:

3 3 _6

4 4
x=|0]+Al1)+u] O], AwpeR.

0 0 1
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To convert from parametric to Cartesian:
@ We write each component separately (like we did for lines).
© Eliminate the parameters with our equations.
«0)>» «Fr «=»r « > o>
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Introduction to Vectors

Chapter 1: Introduction to vectors

Planes - From parametric to Cartesian - example
Find the Cartesian form of the plane

1 1
X =

-1
1l+Al1|+p] O

, A ueR.
2 1 2

Gerald Huang, Yasin Khan

[m]

5
MATH1131/1141 Revision



Introduction to Vectors Planes

Chapter 1: Introduction to vectors

For reference:

T

Let x = | 22 |- Then comparing each component separately, we
T3

have the equations:

r1=1+A—p, ma=14+X 2x3=2+A+2u.
By inspection, we deduce that
T1=1To— L= [l =To —T71.
Substituting this equation into the third equation gives us:
x3=2+(x2—1)+2(xa— 1) =3w2 - 221 + 1

or:
2x1 - 3$2 + I3 = 1.
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Introduction to Vectors

Chapter 1: Introduction to vectors

Applications - lines and planes
MATH1131/1141 2018 Semester 1 Q2vi
Consider the lines ¢; and ¢5 in R? defined below.

2

1
tix=[o]+xl 2], AeR
1 -1

-4
622331:4,:”2

.’L‘3+1

o
Show that the lines ¢; and #5 intersect.
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Introduction to Vectors Planes

Chapter 1: Introduction to vectors

For reference:
We begin by converting ¢ to parametric form. Setting

_$2—4_{L‘3+1

A )
2 3

we get the parametric equation:

4 0
EQ:X: 4 +)\1 2
-1 3

By inspection, we see that setting A = 2 in ¢; will give us the
point (4,4,-1). Hence, they intersect at (4,4,-1).
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@ Introduction to Vectors

© Vector Geometry
© Complex numbers

@ System of linear equations

© Matrices
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o We define the length of a vector a to be
la = \/ai
where a? + ... + a2

n

+..+a2

is indicative of the vector components
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Vector Geometry Dot product

Chapter 2: Vector Geometry

Dot Product
@ The dot product is a form of scalar multiplication on

vector components that will always yield a real number
a-b= a1b1 + CLQbQ + agbg

o We know that if the dot product is 0, then for:
a-b =|al|b|cos¥,

we have 0 = %

o Essentially this means given 2 vectors, we can determine
whether or not they are orthogonal

Gerald Huang, Yasin Khan MATH1131/1141 Revision



e a-a=|a]?

e Commutative Law: a-b=b-a
e a-(Ab)=X\(a-b)

e Distributive Law: a-(b+c)=a-b+b-c
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e Projections are magnitude of the vector components with
respect to another vector
vector b by the following:

o We define the projection of some vector a on some other

-b
proj,a= a—b

[bf?

«0)>» «Fr «=»r « > o>




Vector Geometry Projection

Chapter 2: Vector Geometry

Projections

Projections are essentially the heart of Vector Geometry.
Problem solving questions in this topic will require you to think

critically about how vectors are related to each other through
this concept

] = =
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Chapter 2: Vector Geometry

Projection

Projections - An important result

Let’s look at a more theoretical question that proves a very
common (and important) result

o Given a point B and the line x = a + Av, calculate the

shortest distance between the point and the line.

Gerald Huang, Yasin Khan
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Vector Geometry Projection

Chapter 2: Vector Geometry

Projections - An important result

o Looking at our figure. We already know the altitude
—_— —— —
PB=AB - AP. We are only interested in the distance or
—
magnitude of this vector i.e. |PB|.

o Here we have to recognise that AB is nothing but
— —_—
PB=b-a-AP
- . . . . -
o But we know that AP is simply the projection of AB onto
d. Le.
projy(b - a)
@ Hence we can express our final result, that is the shortest
distance, by the following expression

[PB| = |b-a-projy(b - a)|
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e Sometimes we may want to find a vector that is not
perpendicular to 1 but 2 vectors.
that essentially does this

@ The cross-product is an arithmetic operation on 2 vectors

asbs — asgbsy
axb= a3b1 - a1b3
aibs — ashy

«0)>» «Fr «=»r « » o™




Vector Geometry Cross product

Chapter 2: Vector Geometry

Cross Product - Arithmetic Properties

e axa=0,i.e., the cross product of a vector with itself is the
Zero vector.

e axb=-bxa. The cross product is not commutative. If
the order of vectors in the cross product is reversed, then
the sign of the product is also reversed.

e ax (Ab)=A(ab) and (Aa) xb=A(axb)
e ax (Aa)=0, ie., the cross product of parallel vectors is zero

e Distributive Laws i.e ax (b+c)=axb+axc and
(a+a)xc=axc+bxac.
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the cross product on the two vectors.

The parallelogram formed from 2 vectors has an area equivalent
to the magnitude (or length) of the vector yielded from applying

a C
b
>
A
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Vector Geometry Cross product

Chapter 2: Vector Geometry

Cross Product - Volumes
We can extend this understanding of areas in parallelograms to
find volumes of parallelepipeds. Essentially you can think of
these solids as prisms, with the base of a parallelogram.
o Like any prism, we know that the volume can be derived
simply by multiplying the base by the perpendicular height
o If we write our perpendicular height as a projection of
another vector, then we can derive the expression for the
volume of a parallelopiped as the following:

a-(bxc)
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Vector Geometry Planes

Chapter 2: Vector Geometry

Planes - Point Normal Form
Let’s revisit planes, however this time we are going to re-define
them with our understanding of vector geometry
@ We know that the dot product of the normal vector to a
plane and a vector parallel to the plane will always be 0,
since the two vectors are perpendicular to each other.

@ We can express a normal vector to a plane as

ni
n=|ns
ng
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Vector Geometry Planes

Chapter 2: Vector Geometry

Planes - Point Normal Form

o Likewise a vector parallel to the plane can be written as:

C1
X—=| Co
C3

Where ¢1, co, co are the vector components of a coordinate
vector on the plane

o Thus it follows that our point normal form is expressed as:

n1 c1
n9 X—|ca]]=0
n3 c3
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Point-normal to Cartesian
e Expanding on the definition
ny

na

C1

X —=1]Co

ns
Gives

C3

0

n1x1 + NoXo + N3x3 = nicl + naco + n3cy
=b
«O>» «F» = = A



Vector Geometry Planes

Chapter 2: Vector Geometry

Planes - Converting between forms
Cartesian to Point-normal
@ N1T1 +Noxo +N3r3=0>0
@ On observation we note, that the coefficients of = terms,
correspond to the vector components of the normal.

e To obtain our coordinate vector, i.e. ¢ we need to find a
point that satisfies the plane.
We can do this by setting fixed values for any 2 variables (0)
in our Cartesian equation and solving for the third.
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Vector Geometry Planes

Chapter 2: Vector Geometry

Planes - Converting between forms
Parametric to Point-normal

@ Our 2 components for the point-normal form are as the
name suggests, a point/coordinate and a normal vector

In parametric form we have,
X=a+A\u+ v

@ So we know to obtain a normal vector we find the Cross
product of u and v i.e. uxv

@ Our coordinate vector however can just be taken as a

o We have a Point and a normal, thus we plug that in to get
our point-normal form.
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Point-normal to Parametric
@ First convert Point-normal to Cartesian as shown in
previous slides
in chapter 1

o then convert Cartesian to parametric form as explained

«O0>» «F>r «=»r «E)» = Q>




Vector Geometry Planes

Chapter 2: Vector Geometry

Planes - Converting between forms
Parametric to Cartesian

o Previously the only method of conversion was through
expanding the components to gain a system of linear
equations, and eliminating the parametric

e An easier way is to convert the parametric vector
form into point-normal form.

o Then we simplify convert from point-normal to
Cartesian

o It may seem longer because this is a two step method,
however the algebra is much simpler.
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Vector Geometry
Chapter 3: Complex numbers

Planes

MATH 1131 NOVEMBER 2010 Q2 (vii)

Suppose u, v and w are distinct non-zero vectors with the
property that

projy (u) = projy, (v)
Prove that u — v is perpendicular to w

Gerald Huang, Yasin Khan

[m]

5
MATH1131/1141 Revision



Condition: proj,(u) = proj,,(v)
@ Recall

-b
projpa = 22y
@ Thus,

[bf?

uw_ VW
lwl? wl?
@ Simplifying we have

uw-v-w=0

w-(u-v)=0

@ By definition of dot product u - v is perpendicular to w
«0)>» «Fr «=»r « > o>
~ Gerald Huang, Yasin Khan = MATH1131/1141 Revision



Suppose that u and v are non-zero, non-parallel vectors of the
same magnitude. Prove that u — v is perpendicular to u + v

«O» «Fr « > « > o>



Vector Geometry Planes

Chapter 3: Complex numbers

We don’t really know where to start, so lets pretend we know the
answer and work backwards until we get to a point we are
familiar with.

If they are perpendicular then

(u=-v)-(u+v)=0
(u-u)+(u-v-v-u)—(v-v)=0
u-u+v-v=_0

P - [vP =0

[uf? ~ Juf* = 0

In our actual proof, we would write it backwards.
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Vector Geometry Planes

Chapter 3: Complex numbers

Tip

o We learnt a useful strategy when we can’t immediately
formulate how to answer the question.

o Instead of answering the question traditionally. Why not

assume you have answered the question, and figure out how
you would have got to that solution, by working backwards.

o This is called a 'Discovery’, essentially playing around with
the answer until it looks familiar.

V.

] = =
Gerald Huang, Yasin Khan MATH1131/1141 Revision
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@ Introduction to Vectors

Q Vector Geometry
© Complex numbers

@ System of linear equations

© Matrices
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and divide complex numbers.

Just like with our real numbers, we can add, subtract, multiply

o (x+iy)x(a+ib)=(zxxa)+i(y+d)

o (z+iy)(a+1ib) = (ax -by) +i(bx + ay) Distributive Law

«0)>» «Fr «=»r « > o>




Complex numbers Introduction to complex numbers

Chapter 3: Complex numbers

Dividing Complex Numbers

The conjugate of a complex number z = a + ib is given by
Z = a —1b. We flip the imaginary part.

r+iy x+iy a-—1ib

a+ib  a+ib a—ib

@ Note the technique when dividing complex numbers is to
multiply the numerator and denominator by the complex
conjugate of the denominator.

(x +1iy)(a—1ib)
a2 — b2

We have realised the denominator for further manipulation

Gerald Huang, Yasin Khan MATH1131/1141 Revision



Complex numbers Polar form of a complex number

Chapter 3: Complex numbers

Properties of Polar Form - Modulus

The Cartesian form only gives information about the coordinates
of a complex number. Polar form however,

o Considers the complex number as a vector
@ An associated modulus - r and argument - 0
e We define the polar form as: r(cos6 +isinf)

Hence it follows that x = rcosf and y = rsinf and

r =+/x2 +y2. Allows conversion between the 2 forms
0

We can also define re’

Polar form allows us to easily manipulate vectors through
their geometric properties
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Complex numbers Polar form of a complex number

Chapter 3: Complex numbers

Properties of Polar Form
Conjugate in Polar Form

@ The conjugate in Polar Form is given by

z=rcosf —rsinf
=rcos(-0) + rsin (-0)
=re ¥
o Geometrically this means that the conjugate of a complex
number in Polar form has a negative argument and thus
is reflected across the Real axis

Gerald Huang, Yasin Khan MATH1131/1141 Revision



Modulus Properties
o |al|p] = |ab]
o fif =1
o |o[" ="
® 27=|z

02=%iff|z|=1

«0O0)>» «F»r «=>»

DA



Argument Properties

e arg(ab) = arg(a) + arg(b)
e arg (%) =arga —argb

e arg(z)" =narg(z)

«Or «Fr «=H» DA™



Complex numbers Polar form of a complex number

Chapter 3: Complex numbers

Properties of Polar Form

De Moivre’s Theorem

The above properties are suffice for use to multiply and divide
complex numbers in polar form.

However, polar form also allows simple manipulation of powers of
complex numbers through De Moivre’s Theorem

o (r(cos@+isin))" =r"(cosnb +isinnd)

Gerald Huang, Yasin Khan MATH1131/1141 Revision




Complex numbers Roots of unity

Chapter 3: Complex numbers

Roots of Unity

With the aid of De Moivre’s theorem we can know plot the roots
of some basic complex numbers. e.g. z" =1
o Let z =€’ and convert 1 into a polar vector i.e. e?
o We have: 7"’ = % (By De Moivre’s Theorem)
o Equating Modulus and Argument gives, » =1 and 6 =
Since we can add any multiple of 27

0+27k
—

e Our n roots of unity are

- 0+27k
2=

e For distinct roots, we choose consecutive values of k such
that 6 lies in (-, 7]
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Complex numbers Roots of unity

Chapter 3: Complex numbers

Locus and Regions - Modulus

|z = w| = a. Circle with origin at w and radius of a

z —w| =]z —v|. Line of perpendicular bisector between the
perp
pOiIltS of w and v

o If we had an inequality, then these loci would become
regions instead

e We would consider the region inside or outside of the circle
for the first point

o And we would consider the region on either side of the
perpendicular bisector for the second point
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@ Re(z) = a Corresponds to the line z = a

e Im(z) = a Corresponds to the line y = a

o As discussed before, these become regions if we replace the
equality with an inequality

«O0>» «F>r «=»r «E)» = Q>




Complex numbers Trigonometric applications

Chapter 3: Complex numbers

Trig Applications
Converting cos(nf) into terms of cos#
@ Express (cosf +isinf)" as cos(nf) + isin(nb)
e Express (cosf +isinf)™ using the binomial theorem and
combine real and imaginary parts

o Equate expressions 1 and 2.

For an expression of cos(nf), equate Real parts and for an
expression of sin(nf), equate Imaginary parts
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Complex numbers

Chapter 3: Complex numbers

Trigonometric applications

Trig Applications
Q) Convert cos(36) into terms of cosé

@ Expand (cosf +isin#)3 one way using DeMoivre’s and

another way with binomial theorem
@ cos(360) +isin(30)

Q cos® 0 + 3icos?Hsinf — 3cosfsin® 6 —isin> O

© Comparing Real parts from (2) and (3)
cos(36) = cos® 0 — 3 cos Osin® 0

= cos® 0 — 3cosO(1 - cos? )
=4cos®H—3cosh

Gerald Huang, Yasin Khan
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Complex numbers Trigonometric applications

Chapter 3: Complex numbers

Trig Applications
Converting cos”(6) into linear terms
S e 1 . . _
Proposition: 27 + = = 2cos(j0) (since [2|=1)
o Let z=cosf+isinf

e We know cos” 0 = (% (2’ + %))n

e Expand the RHS using the binomial theorem

Group terms in the form of 27 + Z% and write them as

2cos(j#). (Using our Proposition)
Similarly sin” 6 = (l (z _ l))”

21 z
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Complex numbers Trigonometric applications

Chapter 3: Complex numbers

Trig Applications

Q) Convert cos® @ into linear terms

Q Let z2=cosf+isind
© We know,

(=)
((“—) i(=+3))

cos (36) + 6 cos (30))

cos® 0 =

—

OOID—‘OOIP—‘

] = =
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Complex numbers Polynomials

Chapter 3: Complex numbers

Complex Polynomials
Factorisation Theorem

e Every polynomial of p(z) of degree n > 1 can be factorised
into linear factors of the form

p(z) =a(z-a1)...(z — ap)

Complex Conjugate Theorem

e if (z—«) is a factor of p(z) then so is (z — &)
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Complex numbers Polynomials

Chapter 3: Complex numbers

Complex Polynomials

Factorising into Quadratic Factors with real coefficients
o (z-w)(z2-@)=22-2Re(w)z + |w|?

Note none of the coefficients are complex numbers!!!.

This identity is very important as it enables us to convert

complex linear factors into quadratic factors with only real
coefficients
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Complex numbers
Chapter 3: Complex numbers

Polynomials

MATH 1141 JUNE 2015 Q4 (iii)

z =sin6

a) Use De Moivre’s theorem to express sin 56 as a polynomial in

@ Expand (cosf +isin#)® using the binomial theorem.
@ Apply De Moivre’s on (cos @ +isin )3

@ Equating imaginary parts in 1 and 2 yields
sin56 = 16sin®(z) - 20sin® () + 5sin(x)
Q Let 2 =sin(f) therefore
sin(50) = 162° — 202> + 5z
where x = sinf

Gerald Huang, Yasin Khan
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Complex numbers Polynomials

Chapter 3: Complex numbers

MATH 1141 JUNE 2015 Q4 (iii)

b) Consider the polynomial p(z) = 1625 — 2023 + 52 — 1. Show
that sin({) is a root of p(z).

@ Use part a) to simplify the polynomial into a trig expression.
@ We have p(x) =sin(560) — 1 where x =sin6
@ Hence the roots occur when sin(56) =1

Qo A(t ? = {5 the expression equals 1. Hence sin {j is a root of
p(x

] = =
Gerald Huang, Yasin Khan MATH1131/1141 Revision
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Complex numbers
Chapter 3: Complex numbers

Polynomials

MATH 1141 JUNE 2015 Q4 (iii)
c¢) Using the fact

1625 - 202 + 52— 1 = (- 1) (422 + 2z - 1)?
find the distinct roots of p(z)

©@ We know that z =1 is a root, to find the other roots we

simply apply the quadratic formula on the second factor.
@ The distinct roots of p(z) are: z =1,

-1+v/5 -1+V5
4 " 4

Gerald Huang, Yasin Khan
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Polynomials
Chapter 3:
MATH 1141 JUNE 2015 Q4 (iii)
d)

Evaluate sin % in surd form

@ We know sin

T

10

conclude that sin

w _ =1+/5
10 ~

4

N NETETRESEI 1A 1151/1141 Revision

is the smallest positive root of p(x)
@ By equating the smallest positive root from part c) we
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Complex numbers
Chapter 3: Complex numbers

Polynomials

MATH 1141 JUNE 2012 Q2 (iii)

Suppose that z lies on the unit circle in the complex plane.
a) Show that z + 1

= is real
z

@ 2 lies on the unit circle, therefore |z| =1
@ Hence z=1

z

@ Thus the expression now becomes

z+z

2Re(z)
@ Which is real. QED
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Complex numbers

Chapter 3: Complex numbers

MATH 1141 JUNE 2012 Q2 (iii)

Suppose that z lies on the unit circle in the complex plane.
b) Find the maximum value of z + 1

@ Recall, that |z =1

©Q Let z=cosf +isinf
© Thus

z+z=2Re(z) =2cosb
@ The maximum value is 2.

[}
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@ Introduction to Vectors

© Vector Geometry
© Complex numbers

@ System of linear equations

© Matrices
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You could already solve a low number of linear equations. For
example:

r+y=9
2z -y =0

«O0>» «F>r «=»r «E)» = Q>



z+y=9
What about:

You could already solve a low number of linear equations. For
example:

2z -y =0

r+y+2=9
20 -y +22=0
3x+y+32=10

«O0>» «F>r «=»r «E)» = Q>



You could already solve a low number of linear equations. For
example:

z+y=9
What about:

2z -y =0

r+y+2z=9
20 -y +22=0

3x+y+32=10
Still doable? Ok, what about:

r+y+z+a=9

2 -y +22+2a=0

3r+y+32—-3a=10
dr —y+4z+4a =20 B
«0)>» «Fr «=»r « > o>
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and can be read as:

c d

/)
f
ax +by = e.

cx+dy=f.

Recall that the augmented matrix look like:
( a b

«0O0)>» «F»r «=>» o™



We'll look at four ways of performing elementary row operations:

@ swapping two rows.
@ adding or subtracting two rows together.
© multiplying a row by a scalar.

@ a combination of the three.

«Or «Fr «=H» DA™



System of linear equations Row reduction

Chapter 4: System of linear equations

Swapping two rows

We can swap two rows. The notation for swapping two rows is:

a b c\ Ri<R [d e f
s
d e f a b c
This is very useful for situations where a particular column is
non leading as we are trying to reduce it into row echelon. For

example:
(0] 1) Rior: (1 0
1 0 0 1)

12 3 (123
0 [o] 1]==2100 3 1
0 3 1 00 1
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Note that only the first row is affected.

) R1 =R1 +R2 (
—_—

2a 2b 2c

abc)

Adding/subtracting two rows together
We can also add or subtract two rows together. The notation for
this is:
a b c
(a b ¢

<Or «@> «E=r «E = 9ace




Similarly, we could also multiply a single row by a nonzero scalar.
Doing so, we get this notation.
(a b ¢

Ri=2R: {2a 2b 2c¢
d e f d e f
Also, note that only the first row is affected.

«O0>» «F>r «=»r «E)» = o>



©@ We perform a combination of elementary row operations
onto the matrix.

@ The idea is that we want to write in a form similar to:
a b
0 d
0 0

«0)>» «Fr «=»r « » o™




read off the solutions from the last row up.

solve for the rest!

©@ When we have the matrix in row echelon form, we can just

@ We substitute each solution into the equations above and

We will do examples of these so don’t worry if it’s not clicking!

«0)>» «Fr «=»r « » o™



System of linear equations Row reduction

Chapter 4: System of linear equations

Reducing down to row echelon - example

MATH1131 2014 Semester 2 Q4iii

The current ages of Xena, Yenny and Zac are x, y and z years
respectively. You are given that 48 years ago Zac’s age was triple
that of Yenny’s age at that time.

a) Explain why 3y — z = 96.

b) It is also known that the sum of their current ages is 200
and currently Xena’s age is the sum of Yenny’s and Zac’s
ages. Set up a system of 3 equations in the three unknowns
x, y and z.

¢) By reducing your system to echelon form and back
substituting, find the current ages of Xena, Yenny and Zac.
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System of linear equations Row reduction

Chapter 4: System of linear equations

Reducing down to row echelon - example

MATH1131 2014 Semester 2 Q4iii

The current ages of Xena, Yenny and Zac are x, y and z years
respectively. You are given that 48 years ago Zac’s age was triple
that of Yenny’s age at that time.

a) Explain why 3y - z = 96.

V.

48 years ago, Yenny’s age was y — 48. But at that time, Zac’s age
was triple Yenny’s age. So,

z—-48 = 3(y —48)
z =3y — 144 + 48.
s3y — 2 =96.

] = =
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System of linear equations Row reduction

Chapter 4: System of linear equations

Reducing down to row echelon - example

MATH1131 2014 Semester 2 Q4iii

The current ages of Xena, Yenny and Zac are x, y and z years
respectively. You are given that 48 years ago Zac’s age was triple
that of Yenny’s age at that time.

b) It is also known that the sum of their current ages is 200
and currently Xena’s age is the sum of Yenny’s and Zac’s
ages. Set up a system of 3 equations in the three unknowns
z, y and z.

v

The set of equations are:

3y —z=96. (1)
x+y+2z=200. (2)
x-y—-z=0. (3)

] = =
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System of linear equations Row reduction

Chapter 4: System of linear equations

Reducing down to row echelon - example

MATH1131 2014 Semester 2 Q4iii

The current ages of Xena, Yenny and Zac are x, y and z years
respectively. You are given that 48 years ago Zac’s age was triple
that of Yenny’s age at that time.

¢) By reducing your system to echelon form and back
substituting, find the current ages of Xena, Yenny and Zac.

From part b), we can form an augmented matrix:

0 3 -1| 96
1 1 1200
1 -1 -1] 0

] = =
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System of linear equations Row reduction

Chapter 4: System of linear equations

Reducing down to row echelon - example

MATH1131 2014 Semester 2 Q4iii

The current ages of Xena, Yenny and Zac are x, y and z years
respectively. You are given that 48 years ago Zac’s age was triple
that of Yenny’s age at that time.

¢) By reducing your system to echelon form and back
substituting, find the current ages of Xena, Yenny and Zac.

In reduced row echelon, we have:

1 0 0]100
0 1 0] 49
0 0 1|51

S =100,y =49,z =51

] = =
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System of linear equations Number of solutions

Chapter 4: System of linear equations

Deducing the number of solutions
Suppose you have an augmented matrix in row echelon form.
Then:

@ there exists no solutions if the right hand side is a leading
column.

@ there exists a unique solution if every left hand column
is a leading column AND the right hand side is not a
leading column.

© there exists infinitely many solutions if there is a column on
the left side that’s not leading.
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System of linear equations Number of solutions

Chapter 4: System of linear equations

Deducing the number of solutions - example
MATH1131 2015 Semester 2 Q4iii

A system of three equations in three unknowns x, y and z has
been reduced to the following echelon form:

1 -2 1 4
0 3 2 0
0 0 (a-3)(a-1)|a-1

a) For which value of o will the system have no solution?

b) For which value of o will the system have infinitely many
solutions?

c¢) For the value determined in b), find the general solution.

V.

[m] (=) = =
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System of linear equations Number of solutions

Chapter 4: System of linear equations

Deducing the number of solutions - example
MATH1131 2015 Semester 2 Q4iii

A system of three equations in three unknowns x, y and z has
been reduced to the following echelon form:

1 -2 1 4
0 3 2 0
0 0 (a-3)(a-1)|a-1

a) For which value of o will the system have no solution?

If the system has no solutions, then that means the right hand
side column is leading column. This implies that
(a-3)(a-1)=0and a—1+0. So, we deduce that a =3
produces a system with no solutions.

] = =
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System of linear equations Number of solutions

Chapter 4: System of linear equations

Deducing the number of solutions - example

MATH1131 2015 Semester 2 Q4iii
A system of three equations in three unknowns z, y and z has

been reduced to the following echelon form:

1 -2 1 4
0 3 2 0
0 0 (e-3)(a-1)|a-1

b) For which value of o will the system have infinitely many

solutions? )

If the system have infinitely many solutions, then a left hand
column is not leading and the right hand column is not leading.
So, (¢ =3)(a—1)=0and a—1=0. Thus, we get o = 1.
] = =
Gerald Huang, Yasin Khan MATH1131/1141 Revision



System of linear equations Number of solutions

Chapter 4: System of linear equations

Deducing the number of solutions - example
MATH1131 2015 Semester 2 Q4iii

A system of three equations in three unknowns x, y and z has
been reduced to the following echelon form:

1 -2 1 4
0 3 2 0
0 0 (a-3)(a-1)|a-1

c¢) For the value determined in b), find the general solution.

<

Row 2 tells us that 3y + 2z =0 = 3y = —2z. Row 1 tells us that
x -2y + z = 4. Using these two equations, we end up with:

2¢ - Ty = 8.

] = =
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spanning set.

We say that a vector V' belongs in the span of multiple vectors if

there exists a linear combination of V' using the vectors in the

«0)>» «Fr «=»r « > o>




System of linear equations Number of solutions

Chapter 4: System of linear equations

Application — span of multiple vectors

For example:

6
2
7
is in the span of
6\ [0\ (O
0],]121],]0
0/ \0/ \7

since

6 6 0 0
21=101+12]|+1]0
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System of linear equations

Number of solutions

Chapter 4: System of linear equations

3

Span of multiple vectors — example

Does

ot O

1
belong to the span of

Gerald Huang, Yasin Khan
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System of linear equations Number of solutions

Chapter 4: System of linear equations

For reference:
To see if the vector belong to the span, we need to find a linear
combination, namely:

1 0 3

-2 4 0

A EN AN E

2 2 6

Placing this into an augmented matrix and row reducing, we get:

1 0] 3
0 4|6
0 0|22
0 0|0

Since the right hand column is a leading column, we deduce that
there are no solutions. So the vector does not belong in the
span.
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@ Introduction to Vectors
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@ System of linear equations
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Matrices Matrix arithmetic

Chapter 5: Matrices

Matrix arithmetic

A matrix has a number of columns and rows.

2]

m x n means m rows and n columns. So, a 2 x 3 matrix
means 2 rows and 3 columns.

Number of rows = number of columns means the matrix is
square.

Two matrices can be added together if they have the same
number of columns AND rows.

Matrices are NOT commutative. That is:

Gerald Huang, Yasin Khan MATH1131/1141 Revision




Let A be an m x n matrix and X be an n x p matrix and let x;
be the jth column of X. Then the product B = AX is the m x p
matrix whose jth column b; is given by:

b = AX;

for 1<j<p.

«O0>» «F>r «=»r «E)» = Q>




Let A be an m x n matrix and X be an n x p matrix and let x;
be the jth column of X. Then the product B = AX is the m x p
matrix whose jth column b; is given by:

b = AX;

for 1<j<p.

«O0>» «F>r «=»r «E)» = Q>




Matrices Matrix arithmetic

Chapter 5: Matrices

Definition (matrix multiplication)

Let A be an m x n matrix and X be an n x p matrix and let x;
be the jth column of X. Then the product B = AX is the m x p
matrix whose jth column b; is given by:

bj=AX; forl1<j<p.

Alternate definition (Matrix multiplication)
Two matrices can be multiplied together if and only if:

@ The number of columns of the first matrix matches the
number of rows of the second matrix.

© The resulting matrix will be the rows of the first matrix
multiplied by the column of the second matrix.
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Chapter 5: Matrices

Matrix arithmetic

Matrix multiplication - example

MATH1131 2018 Semester 2 Q4iii

Consider the matrices

1 -4
1 1 1
C=(1 0 )andD=

0 10].
-1 1 -6
Calculate CD.
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Matrices Matrix arithmetic

Chapter 5: Matrices

For reference:

First, we see that C is a 2 x 3 matrix while D is a 3 x 2 matrix.
Thus, CD is compatible. Next, we observe that C'D will be a
2 x 2 matrix. Performing matrix multiplication, we get:

CD:(1x1+1><0+1><1 1><—4+1><10+1><—6)

1x1+0x0+-1x1 1x-4+0x10+-1x-6

:(g g).
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Matrices Transposes

Chapter 5: Matrices

Transposes of matrices and properties

Transposes have the notation: A”.

@ Flip the columns and rows, so that columns become rows
and rows become columns. For example:

fr 2] o [t 3
aefs 2ol i)

Q (AB)T =BT AT,

0 (AT = A

Q@ (A+B)T=AT+ BT,

Q@ AT = A — A is symmetric.

0 AT =-A — A is skew-symmetric.

Gerald Huang, Yasin Khan MATH1131/1141 Revision



only defined for square matrices.
@ For a 2 x 2 matrix

the determinant is:

4= (e 3)

det(A) = ad - be.

Determinants have the notation: det(A) =|A|. Note that they’re

«O>» «Fr «=)» = = A



Matrices Determinants

Chapter 5: Matrices

Determinants of matrices and properties

Determinants have the notation: det(A) =|A|. Note that they’re
only defined for square matrices.

2= ()

det(A) = ad - be.

@ For a 2 x 2 matrix

the determinant is:

boi_boi_boi_
boi_boi, boi,
boi, boi_ boi

here come det(boi)
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Matrices Determinants

Chapter 5: Matrices

Determinants of matrices and properties

Determinants have the notation: det(A) = |A|. Note that they’re
only defined for square matrices.

@ For a 3 x 3 matrix

a b c
A=|d e f
g h 1

the determinant is:

det(A) =a(ei— fh) -b(di - fg) + c(dh - eg).

Be careful about sign changes!

Determinants are tricky because they have sign changes! They
follow the pattern: +/-/+/...
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Chapter 5: Matrices

Determinants

Determinants - 3x3 example

MATH1131 2014 Semester 1 Q3ii
1 -1 1
Let M= 2 1 3}
-1 2 1

@ Evaluate the determinant of M.
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Matrices Determinants

Chapter 5: Matrices

Determinants - 3x3 example

MATH1131 2014 Semester 1 Q3ii

1 -1 1
Let M= 2 1 3]
-1 2 1

@ Evaluate the determinant of M.

Determinant comes out to be:

det(M)=1(1-6)+1(2+3)+1(4+1)
=-5+5+5H
= 9.

] = =
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Determinants have the notation: det(A) =|A|. Note that they’re
only defined for square matrices.

@ For a 4 x 4 matrix

-~ > X

A=

S S . o
S Q o

a
e
?

m

the determinant is: uhh.. let’s not go into that.

«0)>» «Fr «=»r « o™

»



Matrices Determinants

Chapter 5: Matrices

Using row reduction to find the determinant

For higher dimensions, calculating the determinant by hand
becomes ew! So let’s find another way to find a determinant.
Why don’t we try to find the determinant through row
reduction? Note that:

@ Multiplying a row by a scalar also scales the determinant.
For example, performing the row operation: R; = 2R,
scales the determinant by 2.

© Swapping two rows negates the determinant. For example:
Ry < Ry —> —det(A).

@ Adding two rows does not change the determinant.

@ The determinant just becomes the product of the diagonal

Gerald Huang, Yasin Khan MATH1131/1141 Revision



Find the determinant of:

Using row reduction to find the determinant — example

«O» «Fr « > « > o>



Chapter 5: Matrices

Determinants

Using row reduction to find the determinant — example
Find the determinant of:

0 3 6
1 5 -2

1 2 -4

The row operations you will perform may be:

R1=Ry/3.
This will allow us to bring out the three from outside the
determinant.

R1 <~ RQ.
This will negate the sign of the determinant.

Rs=R; - Rs.
This will do nothing to the determinant.
Gerald Huang, Yasin Khan

[m]

5
MATH1131/1141 Revision



Chapter 5:

Find the determinant of:

Using row reduction to find the determinant — example

0 3 6

1 5 -2
1 2

-4

When we put all of these together, the determinant becomes —12

N NETEESENI 1A 1151/1141 Revision
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only defined for square matrices.

O det(A) =det (AT).

@ det(AB) = det(A)det(B).

Determinants have the notation: det(A) = |A|. Note that they’re

«Or «Fr «=H» DA™
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Chapter 5: Matrices

Determinants

Even though det(AB) = det(A)det(B), we can’t say the same
about A + B. That is, in general,

det(A+ B) # det(A) + det(B).

We’re going to see an example of where this doesn’t hold.

Gerald Huang, Yasin Khan
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Chapter 5: Matrices

Determinants

Determinant - example

MATH1131 2018 Semester 2 Q4i
Let A and B be 2 x 2 matrices.

@ Use a counterexample to show that det(A + B) does not
equal to det(A) + det(B) in general.

Gerald Huang, Yasin Khan
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Chapter 5: Matrices

Determinants

MATH1131 2018 Semester 2 Q4i
Let A and B be 2 x 2 matrices.

@ Use a counterexample to show that det(A + B) does not
equal to det(A) + det(B) in general.
Let A= (1 0

00 . .
0 0) and B = (0 1). Determinant of both is 0.

Gerald Huang, Yasin Khan
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Matrices Determinants

Chapter 5: Matrices

Determinant - example

MATH1131 2018 Semester 2 Q4i
Let A and B be 2 x 2 matrices.

@ Use a counterexample to show that det(A + B) does not
equal to det(A) + det(B) in general.

Let A= ((1] 8) and B = (8 g) Determinant of both is 0.

10 00 10
A+B—(0 0)+(0 1)—(0 1)and]A+B|—1.

o =] = E T 9ac
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Matrices Determinants

Chapter 5: Matrices

MATH1141 2013 Semester 1 Q3iii
Which of the following statements are true for all non-zero 2 x 2
matrices? For those statements which are not always true, give a
counter example.

a) det(AB) = det(BA).

b) If det(AB) = det(AC) then det(B) = det(C).

c) If AB=AC then B=C.

o =] = E T 9ac
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Matrices Determinants

Chapter 5: Matrices

Determinant - another example

MATH1141 2013 Semester 1 Q3iii
Which of the following statements are true for all non-zero 2 x 2

matrices? For those statements which are not always true, give a
counter example.

a) det(AB) = det(BA).
b) If det(AB) = det(AC) then det(B) = det(C).
c) If AB=AC then B=C.

a) Yes. Exploit the property det(AB) = det(A)det(B).

1 0 1 0 20
b) No. Counterexample.A—(O 0),3—(0 1),0—( )

] = =
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Matrices Determinants

Chapter 5: Matrices

Determinant - another example
MATH1141 2013 Semester 1 Q3iii
Which of the following statements are true for all non-zero 2 x 2

matrices? For those statements which are not always true, give a
counter example.

a) det(AB) = det(BA).
b) If det(AB) = det(AC) then det(B) = det(C).
c) If AB=AC then B=C.

1 0 0 1 0 1
¢) No. Counterexample.A—(O 0),3—(1 O),C—( )

=} = = E £ 9AQC
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Matrices Determinants

Chapter 5: Matrices

Some more interesting properties of determinants

If an entire row or column is 0, then the determinant of the
matrix is 0.

If a row is a multiple of another row, then the determinant
of the matrix is 0.

If a column is a multiple of another column, then the
determinant of the matrix is 0.

Suppose that we have A = n xn matrix. Then

’ det(mA) =m"det(A). ‘

Gerald Huang, Yasin Khan MATH1131/1141 Revision




Matrices Determinants

Chapter 5: Matrices

Some more interesting properties of determinants

@ If an entire row or column is 0, then the determinant of the
matrix is 0.

@ If a row is a multiple of another row, then the determinant
of the matrix is 0.

@ If a column is a multiple of another column, then the
determinant of the matrix is 0.

@ Suppose that we have A =n x n matrix. Then

’ det(mA) =m"det(A). ‘

..what hax.
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= A.

O det (A7) = (det(A))™

A matrix A has an inverse if and only if:
det(A) # 0.
Alternatively, we can also say that A is invertible.
Q AA' =1
il
@ (A7)

«O>» «Fr «=)>» « = = A




The inverse of a 2 x 2 matrix
A= (
is given by:

«Or «Fr «=H» DA™



Inverse of a 2 x 2 matrix — example

MATH1131 2014 Semester 1 Q3ii
3 1
Let N = ( 4 2).

Write down the inverse of V.

«O>» «F>r «=)>» = = A



Chapter 5: Matrices

Inverses

Inverse of a 2 x 2 matrix — example

MATH1131 2014 Semester 1 Q3ii
Let N = (3 1).

4 2

Write down the inverse of V.

Calculating the determinant gives us 2, so there exists an inverse.
Thus, the inverse is:

The inverse of a matrix exists if its determinant is not 0.

a1 (2
~ det(NV) (—4 3)
(2 -1
_5(—4 3)'

Gerald Huang, Yasin Khan
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@ Augment the matrix in the form ( A | 1 )

@ We row reduce the matrix so that we have ( I | AL )
@ The right hand matrix is the inverse of A.

We'll do a few examples, starting with 2 x 2 matrices.

«O0>» «F>r «=»r «E)» = Q>



Using row reduction to find the inverse — 2 x 2 matrix
Find the inverse of A, where

«O>» «Fr «=>r «E)» = Q>



Chapter 5: Matrices

Inverses

Find the inverse of A, where

Using row reduction to find the inverse — 2 x 2 matrix

3 1
(i3
Augmenting the matrix, we have:

3 1|1 0
4 20 1)
We aim to have the left side become the identity matrix.
Performing elementary row operations, we get:

(1 0] 1 —1/2)
01 '

-2 3/2

Gerald Huang, Yasin Khan
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Chapter 5: Matrices

Inverses

Using row reduction to find the inverse — 2 x 2 matrix
Find the inverse of A, where

31
(i3
So the inverse of A is the right side matrix:
1o-1/2) 1(2 -1
2 3/2) " 2\-4 3

as we saw before.

Gerald Huang, Yasin Khan
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Using row reduction to find the inverse
Find the inverse of A, where

3 x 3 matrix

«O» «Fr « > « > o>



Matrices Inverses

Chapter 5: Matrices

Using row reduction to find the inverse — 3 x 3 matrix

Find the inverse of A, where

1 6 7
A=|8 2 2
4 8 10

Augmenting the matrix, we have:

16 7|11 00
8 2 21010
4 8 10|10 0 1

=] F
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Chapter 5: Matrices

Inverses

Using row reduction to find the inverse — 3 x 3 matrix
Find the inverse of A, where

1 6 7
8 2 2
4 8 10

A=

Again, we aim to have the left side become the identity matrix
So performing elementary row operations, we get:

1 00| -1/9 1/9 1/18
At=10 1 0] 2 /2 -3/2
0 0 1]-14/9 -4/9 23/18

Gerald Huang, Yasin Khan
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Chapter 5: Matrices

Inverses

Using row reduction to find the inverse — 3 x 3 matrix
Find the inverse of A, where

16 7
A=|8 2 2
4 8 10
So the inverse of A is given by the matrix:
~1/9  1/9  1/18
2 1/2 -3/2
~14/9 -4/9 23/18

Gerald Huang, Yasin Khan
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Chapter 5: Matrices

Inverses

Using row reduction to find the inverse — 3 x 3 matrix
Find the inverse of A, where

1 6 7
A=

8 2 2
4 8 10
So the inverse of A is given by the matrix:
~1/9 1/9 1/18
2 1/2

-3/2
-14/9 -4/9 23/18

Gerald Huang, Yasin Khan
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Chapter 5: Matrices

Inverses

Inverse of a matrix - example

MATH1131 2018 Semester 1 Q3iv

Given that the invertible n x n matrix A satisfies

A2 =92A+1,

express the inverse of A in terms of A and I.

Gerald Huang, Yasin Khan
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Matrices Inverses

Chapter 5: Matrices

Inverse of a matrix - example

MATH1131 2018 Semester 1 Q3iv
Given that the invertible n x n matrix A satisfies

A2 =924 +1,

express the inverse of A in terms of A and I.

v

Multiplying both sides by the inverse of A on the right side, we
get:

A?AT = (2A4+T)A7

A=24A"1+ A7
A-2I=A""
SAT = A2
o = = = = 9ar
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Chapte

Inverse of a matrix - A final example

MATH1151 2016 Semester 1 Q3v

Prove that if an n x n matrix A is invertible and both A and A™!
have only integer entries then det(A) = +1.

=] 5
 Gerald Huang, Yasin Khan | MATHI1131/1141 Revision
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Matrices Inverses

Chapter 5: Matrices

Inverse of a matrix - A final example

MATH1151 2016 Semester 1 Q3v
Prove that if an n x n matrix A is invertible and both A and A™!
have only integer entries then det(A) = 1.

AAT =T = det (AA7) =1
= det(A)det (A_l) =1
1
= det(4) = ———.
) = v A
Now, since A and A~ have only integer entries, then its
determinants are integers. Since det(A) is an integer, then
det (A‘l) = +1, which implies that det (A) = +1.
=] 5 = E =
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seminar valuable!

Best of luck with the exam! We hope that you found this

Click here! '

«O0>» «F>r «=»r «E)» = Q>
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