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Introduction to Vectors

Chapter 1: Introduction to vectors

Algebraic interpretation of vectors

Addition of vectors by component:

Add each component together and express them in vector
form.
e.g. (

1
2
) + (

3
4
) = (

4
6
)

e.g. (1̂i + 2ĵ) + (3̂i + 4ĵ) = 4̂i + 6ĵ

Subtraction of vectors by component:

Subtract the components individually and then express them
in vector form.
e.g. (

3
4
) − (

1
2
) = (

2
2
)

e.g. (3̂i + 4ĵ) − (1̂i + 2ĵ) = 2̂i + 2ĵ
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Introduction to Vectors Interpretations of vectors

Chapter 1: Introduction to vectors

Algebraic interpretation of vectors

Multiplication of a vector by a non zero scalar:

The non zero scalar can be expanded into each of the
components.
e.g. −2 ⋅ (1

2
) = (

−2
−4

)

We can also factor out the highest common factor.
e.g. (

3
6
) = 3 ⋅ (1

2
)

We’ll develop these ideas a little bit further when we start
looking at lines and planes.
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Introduction to Vectors Interpretations of vectors

Chapter 1: Introduction to vectors

Geometric interpretation of vectors

Geometrically, a vector is a ray that only requires a
direction and a magnitude.

Use tail-to-tip method to geometrically add and subtract
two vectors.

Take a vector a and trace the vector from the origin.
From the tip (where the arrow would be), trace your second
vector b. The result from the origin is a + b.
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Introduction to Vectors Lines

Chapter 1: Introduction to vectors

Lines

Lines can be represented in two ways: parametrically and
with Cartesian coordinates.

Parametrically: start with a point on the line a and then
walk some distance in the direction of the line:

S = {x ∈ Rn ∶ x = a + λv, λ ∈ R}

Cartesian coordinates: these appear in the form:

S = {x ∈ Rn ∶ x =
x1 − a1
b1

=
x2 − a2
b2

= ⋅ ⋅ ⋅ =
xn − an
bn

}
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Introduction to Vectors Lines

Chapter 1: Introduction to vectors

Lines in parametric form

We saw the parametric representation of a typical line
passing through a point and parallel to a vector.

We can also express a line segment
Ð→
AB parametrically as:

S = {x ∈ Rn ∶ x = a + λ (b − a) , λ ∈ [0,1]}

A note about parametric lines!

If you get a different parametric representation, don’t worry!
You could still be correct. Lines have an infinite number of
parametric representations. For example, these two describe the
same line. See if you can find the equation of the line!

(
1
1
) + λ1 (

1
1
) = λ2 (

1
1
)
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Introduction to Vectors Lines

Chapter 1: Introduction to vectors

Lines in parametric form - example

MATH1131/1141 2016 Semester 1 Q2vi a)
The points A and B have position vectors

a =
⎛
⎜
⎝

1
0
1

⎞
⎟
⎠

and
⎛
⎜
⎝

3
4
7

⎞
⎟
⎠
.

a) Find a parametric vector equation of the line ` passing
through A and B.

Gerald Huang, Yasin Khan MATH1131/1141 Revision



Introduction to Vectors Lines

Chapter 1: Introduction to vectors

We note that the parametric representation of a line is given by:

` = a + λv, λ ∈ R.

For convenience, we’ll just choose our a vector to be the a in the
question. But it’s perfectly fine to pick b.
Our v is just the line segment AB. This will give us:

` = a + λ (b − a) , λ ∈ R

=
⎛
⎜
⎝

1
0
1

⎞
⎟
⎠
+ λ

⎛
⎜
⎝

⎛
⎜
⎝

3
4
7

⎞
⎟
⎠
−
⎛
⎜
⎝

1
0
1

⎞
⎟
⎠

⎞
⎟
⎠

=
⎛
⎜
⎝

1
0
1

⎞
⎟
⎠
+ λ

⎛
⎜
⎝

2
4
6

⎞
⎟
⎠
.
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Introduction to Vectors Lines

Chapter 1: Introduction to vectors

Lines in Cartesian form

The Cartesian form could appear as the following:

x − a

b
=
y − c

d
.
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Introduction to Vectors Lines

Chapter 1: Introduction to vectors

Lines - From Cartesian to parametric - part one

For this part, we consider the standard Cartesian equation:

ax + by = c

To convert to parametric, we:

Set one variable to be the parameter λ.

Rewrite the other variable in terms of the parameter.

Express your answer in vector form.
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Introduction to Vectors Lines

Chapter 1: Introduction to vectors

Lines - From Cartesian to parametric - part one - example

Consider the Cartesian equation of a line:

` ∶ 2x − 4y = 6.

Find a parametric equation of the Cartesian equation `.
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Introduction to Vectors Lines

Chapter 1: Introduction to vectors

Lines - From Cartesian to parametric - part one - example

Consider the Cartesian equation of a line:

` ∶ 2x − 4y = 6.

Find a parametric equation of the Cartesian equation `.

Let’s set y to be our parameter λ.
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Introduction to Vectors Lines

Chapter 1: Introduction to vectors

Lines - From Cartesian to parametric - part one - example

Consider the Cartesian equation of a line:

` ∶ 2x − 4y = 6.

Find a parametric equation of the Cartesian equation `.

Let’s set y to be our parameter λ. Then we have 2x − 4λ = 6.
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Introduction to Vectors Lines

Chapter 1: Introduction to vectors

Lines - From Cartesian to parametric - part one - example

Consider the Cartesian equation of a line:

` ∶ 2x − 4y = 6.

Find a parametric equation of the Cartesian equation `.

Let’s set y to be our parameter λ. Then we have 2x − 4λ = 6. We
then aim to write x in terms of our parameter.
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Introduction to Vectors Lines

Chapter 1: Introduction to vectors

Lines - From Cartesian to parametric - part one - example

Consider the Cartesian equation of a line:

` ∶ 2x − 4y = 6.

Find a parametric equation of the Cartesian equation `.

Let’s set y to be our parameter λ. Then we have 2x − 4λ = 6. We
then aim to write x in terms of our parameter. This gives us:

x =
6 + 4λ

2
= 3 + 2λ, λ ∈ R.
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Introduction to Vectors Lines

Chapter 1: Introduction to vectors

Lines - From Cartesian to parametric - part one - example

Consider the Cartesian equation of a line:

` ∶ 2x − 4y = 6.

Find a parametric equation of the Cartesian equation `.

Let’s set y to be our parameter λ. Then we have 2x − 4λ = 6. We
then aim to write x in terms of our parameter. This gives us:

x =
6 + 4λ

2
= 3 + 2λ, λ ∈ R.

So, our parametric representation COULD be:

(
x
y
) = (

3 + 2λ
0 + λ

) = (
3
0
) + λ(

2
1
) , λ ∈ R.
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Introduction to Vectors Lines

Chapter 1: Introduction to vectors

Lines - From Cartesian to parametric - part two - example

Modified version of class test 1 from 2014 Semester 1 Version 2b

Consider the line ` in R3 with Cartesian equation:

x − 2

3
=
y + 1

4
=
z + 3

1
.

Find a parametric equation of the line `.
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Introduction to Vectors Lines

Chapter 1: Introduction to vectors

Lines - From Cartesian to parametric - part two - example

Modified version of class test 1 from 2014 Semester 1 Version 2b

Consider the line ` in R3 with Cartesian equation:

x − 2

3
=
y + 1

4
=
z + 3

1
.

Find a parametric equation of the line `.

Setting the entire equation equal to our parameter λ, we get:

λ =
x − 2

3
=
y + 1

4
=
z + 3

1
.
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Introduction to Vectors Lines

Chapter 1: Introduction to vectors

Lines - From Cartesian to parametric - part two - example

Modified version of class test 1 from 2014 Semester 1 Version 2b

Consider the line ` in R3 with Cartesian equation:

x − 2

3
=
y + 1

4
=
z + 3

1
.

Find a parametric equation of the line `.

Let’s solve for x, y and z. If λ = x−2
3 =

y+1
4 = z+3

1 , then:

λ =
x − 2

3
⇒ x = 3λ + 2

λ =
y + 1

4
⇒ y = 4λ − 1

λ =
z + 3

1
⇒ z = λ − 3
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Introduction to Vectors Lines

Chapter 1: Introduction to vectors

Lines - From Cartesian to parametric - part two - example

Modified version of class test 1 from 2014 Semester 1 Version 2b

Consider the line ` in R3 with Cartesian equation:

x − 2

3
=
y + 1

4
=
z + 3

1
.

Find a parametric equation of the line `.

So our parametric representation is:

⎛
⎜
⎝

x
y
z

⎞
⎟
⎠
=
⎛
⎜
⎝

2 + 3λ
−1 + 4λ
−3 + λ

⎞
⎟
⎠
=
⎛
⎜
⎝

2
−1
−3

⎞
⎟
⎠
+ λ

⎛
⎜
⎝

3
4
1

⎞
⎟
⎠
, λ ∈ R.
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Introduction to Vectors Lines

Chapter 1: Introduction to vectors

Lines - From parametric to Cartesian

Here, we’ll consider a simple vector in R3. But this method
works for any dimension. We consider the equation:

⎛
⎜
⎝

x
y
z

⎞
⎟
⎠
=
⎛
⎜
⎝

x0
y0
z0

⎞
⎟
⎠
+ λ

⎛
⎜
⎝

x1
y1
z1

⎞
⎟
⎠
.

To convert to Cartesian, we:

write each of the components separately and solve for the
parameter λ.

equate all of the equations to form the alternative form of a
line.
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Introduction to Vectors Lines

Chapter 1: Introduction to vectors

Lines - From parametric to Cartesian

So this will give us:

x = x0 + λx1 ⇒ λ =
x − x0
x1

y = y0 + λy1 ⇒ λ =
y − y0
y1

z = z0 + λz1 ⇒ λ =
z − z0
z1

Finally, equating all of the equations give us the alternatively
form of a line:

x − x0
x1

=
y − y0
y1

=
z − z0
z1

.
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Introduction to Vectors Lines

Chapter 1: Introduction to vectors

Lines - From parametric to Cartesian - example

Find the Cartesian form for the line:

x =
⎛
⎜
⎝

2
−3
1

⎞
⎟
⎠
+ λ

⎛
⎜
⎝

3
5
6

⎞
⎟
⎠
, λ ∈ R.
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Introduction to Vectors Lines

Chapter 1: Introduction to vectors

Lines - From parametric to Cartesian - example

Find the Cartesian form for the line:

x =
⎛
⎜
⎝

2
−3
1

⎞
⎟
⎠
+ λ

⎛
⎜
⎝

3
5
6

⎞
⎟
⎠
, λ ∈ R.

Writing each component separately (and solving for the
parameter) gives us:

x = 2 + 3λ⇒ λ =
x − 2

3

y = −3 + 5λ⇒ λ =
y + 3

5

z = 1 + 6λ⇒ λ =
z − 1

6
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Introduction to Vectors Lines

Chapter 1: Introduction to vectors

Lines - From parametric to Cartesian - example

Find the Cartesian form for the line:

x =
⎛
⎜
⎝

2
−3
1

⎞
⎟
⎠
+ λ

⎛
⎜
⎝

3
5
6

⎞
⎟
⎠
, λ ∈ R.

Writing each component separately (and solving for the
parameter) gives us:

x = 2 + 3λ⇒ λ =
x − 2

3

y = −3 + 5λ⇒ λ =
y + 3

5

z = 1 + 6λ⇒ λ =
z − 1

6
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Introduction to Vectors Lines

Chapter 1: Introduction to vectors

Lines - From parametric to Cartesian - example

Find the Cartesian form for the line:

x =
⎛
⎜
⎝

2
−3
1

⎞
⎟
⎠
+ λ

⎛
⎜
⎝

3
5
6

⎞
⎟
⎠
, λ ∈ R.

Writing each component separately (and solving for the
parameter) gives us:

x = 2 + 3λ⇒ λ =
x − 2

3

y = −3 + 5λ⇒ λ =
y + 3

5

z = 1 + 6λ⇒ λ =
z − 1

6

Gerald Huang, Yasin Khan MATH1131/1141 Revision



Introduction to Vectors Lines

Chapter 1: Introduction to vectors

Lines - From parametric to Cartesian - example

Find the Cartesian form for the line:

x =
⎛
⎜
⎝

2
−3
1

⎞
⎟
⎠
+ λ

⎛
⎜
⎝

3
5
6

⎞
⎟
⎠
, λ ∈ R.

Writing each component separately (and solving for the
parameter) gives us:

x = 2 + 3λ⇒ λ =
x − 2

3

y = −3 + 5λ⇒ λ =
y + 3

5

z = 1 + 6λ⇒ λ =
z − 1

6
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Introduction to Vectors Lines

Chapter 1: Introduction to vectors

Lines - From parametric to Cartesian - example

Find the Cartesian form for the line:

x =
⎛
⎜
⎝

2
−3
1

⎞
⎟
⎠
+ λ

⎛
⎜
⎝

3
5
6

⎞
⎟
⎠
, λ ∈ R.

Let’s eliminate the parameter! λ is the same in all of the
equations. So:

λ =
x − 2

3
=
y + 3

5
=
z − 1

6
.

..Voila! Our Cartesian equation!
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Introduction to Vectors Lines

Chapter 1: Introduction to vectors

Lines - From parametric to Cartesian - example

Find the Cartesian form for the line:

x =
⎛
⎜
⎝

2
−3
1

⎞
⎟
⎠
+ λ

⎛
⎜
⎝

3
5
6

⎞
⎟
⎠
, λ ∈ R.

Let’s eliminate the parameter! λ is the same in all of the
equations. So:

λ =
x − 2

3
=
y + 3

5
=
z − 1

6
.

..Voila! Our Cartesian equation!
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Introduction to Vectors Lines

Chapter 1: Introduction to vectors

Lines - From parametric to Cartesian - example

Find the Cartesian form for the line:

x =
⎛
⎜
⎝

2
−3
1

⎞
⎟
⎠
+ λ

⎛
⎜
⎝

3
5
6

⎞
⎟
⎠
, λ ∈ R.

Let’s eliminate the parameter! λ is the same in all of the
equations. So:

λ =
x − 2

3
=
y + 3

5
=
z − 1

6
.

..Voila! Our Cartesian equation!
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Introduction to Vectors Planes

Chapter 1: Introduction to vectors

Introduction to Planes

Like lines, planes can also be represented parametrically and
with Cartesian coordinates.

Parametrically: start with a point a and then start
walking some distance in two directions:

S = {x ∈ Rn ∶ x = a + λv1 + µv2, λ, µ ∈ R}

Cartesian: we represent any plane as:

ax + by + cz = d.
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Introduction to Vectors Planes

Chapter 1: Introduction to vectors

Planes in parametric form - example

MATH1131 2015 Semester 2 Q3iv
Find a vector parametric form for the plane passing through the
three points with position vectors

⎛
⎜
⎝

1
2
−1

⎞
⎟
⎠
,
⎛
⎜
⎝

0
3
1

⎞
⎟
⎠

and
⎛
⎜
⎝

−2
1
−5

⎞
⎟
⎠
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Introduction to Vectors Planes

Chapter 1: Introduction to vectors

Planes in parametric form - example

MATH1131 2015 Semester 2 Q3iv
Find a vector parametric form for the plane passing through the
three points with position vectors

⎛
⎜
⎝

1
2
−1

⎞
⎟
⎠
,
⎛
⎜
⎝

0
3
1

⎞
⎟
⎠

and
⎛
⎜
⎝

−2
1
−5

⎞
⎟
⎠

Let’s begin by walking up to a point. We’ll walk up to the point
(1,2,−1)T .
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Introduction to Vectors Planes

Chapter 1: Introduction to vectors

Planes in parametric form - example

MATH1131 2015 Semester 2 Q3iv
Find a vector parametric form for the plane passing through the
three points with position vectors

⎛
⎜
⎝

1
2
−1

⎞
⎟
⎠
,
⎛
⎜
⎝

0
3
1

⎞
⎟
⎠

and
⎛
⎜
⎝

−2
1
−5

⎞
⎟
⎠

Let’s begin by walking up to a point. We’ll walk up to the point
(1,2,−1)T .
Now, from where we’re standing, we want to be able to walk to
the second and third points.
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Introduction to Vectors Planes

Chapter 1: Introduction to vectors

Planes in parametric form - example

MATH1131 2015 Semester 2 Q3iv
Find a vector parametric form for the plane passing through the
three points with position vectors

⎛
⎜
⎝

1
2
−1

⎞
⎟
⎠
,
⎛
⎜
⎝

0
3
1

⎞
⎟
⎠

and
⎛
⎜
⎝

−2
1
−5

⎞
⎟
⎠

To get to the second point, we can find the direction we want to
walk in by taking the first vector from the second vector:

⎛
⎜
⎝

0
3
1

⎞
⎟
⎠
−
⎛
⎜
⎝

1
2
−1

⎞
⎟
⎠
=
⎛
⎜
⎝

−1
1
2

⎞
⎟
⎠
.
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Introduction to Vectors Planes

Chapter 1: Introduction to vectors

Planes in parametric form - example

MATH1131 2015 Semester 2 Q3iv
Find a vector parametric form for the plane passing through the
three points with position vectors

⎛
⎜
⎝

1
2
−1

⎞
⎟
⎠
,
⎛
⎜
⎝

0
3
1

⎞
⎟
⎠

and
⎛
⎜
⎝

−2
1
−5

⎞
⎟
⎠

Similarly, to get to the third point, we can find the direction we
want to walk in by taking the first vector from the third vector:

⎛
⎜
⎝

−2
1
−5

⎞
⎟
⎠
−
⎛
⎜
⎝

1
2
−1

⎞
⎟
⎠
=
⎛
⎜
⎝

−3
−1
−4

⎞
⎟
⎠
.
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Introduction to Vectors Planes

Chapter 1: Introduction to vectors

Planes in parametric form - example

MATH1131 2015 Semester 2 Q3iv
Find a vector parametric form for the plane passing through the
three points with position vectors

⎛
⎜
⎝

1
2
−1

⎞
⎟
⎠
,
⎛
⎜
⎝

0
3
1

⎞
⎟
⎠

and
⎛
⎜
⎝

−2
1
−5

⎞
⎟
⎠

Then the parametric form becomes:

x =
⎛
⎜
⎝

1
2
−1

⎞
⎟
⎠
+ λ

⎛
⎜
⎝

−1
1
2

⎞
⎟
⎠
+ µ

⎛
⎜
⎝

3
1
4

⎞
⎟
⎠
, λ, µ ∈ R.
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Introduction to Vectors Planes

Chapter 1: Introduction to vectors

Planes - From Cartesian to parametric

Say that we have a plane of the form:

ax + by + cz = d.

1 We find three points on the plane.

2 From these points that we find, we set one point as a pivot
point.

3 We then find the direction vectors to get our parametric
vector form of a plane.
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Introduction to Vectors Planes

Chapter 1: Introduction to vectors

Planes - From Cartesian to parametric

Say that we have a plane of the form:

ax + by + cz = d.

Alternatively, we can:

1 Write one variable in terms of the other. You will then have
two degrees of freedom.

2 Then we can find the parametric equation of the vector form
quite easily!

We shall do an example to demonstrate these two different
methods.
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Introduction to Vectors Planes

Chapter 1: Introduction to vectors

Planes - From Cartesian to parametric – example (Method 1)

Find a parametric vector form of the plane

4x1 − 3x2 + 6x3 = 12.
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Introduction to Vectors Planes

Chapter 1: Introduction to vectors

For reference:
We shall begin by finding just three points on the plane. The
easiest points are at (0,0, x3), (0, x2,0) and (x1,0,0). So the
three points are:

⎛
⎜
⎝

3
0
0

⎞
⎟
⎠
,
⎛
⎜
⎝

0
−4
0

⎞
⎟
⎠
,
⎛
⎜
⎝

0
0
2

⎞
⎟
⎠
.

Fixing the first vector to be our point of reference, we can find
the direction vectors by subtracting the other vectors from the
first vector. So the direction vectors become:

⎛
⎜
⎝

0
−4
0

⎞
⎟
⎠
−
⎛
⎜
⎝

3
0
0

⎞
⎟
⎠
=
⎛
⎜
⎝

−3
−4
0

⎞
⎟
⎠
,
⎛
⎜
⎝

0
0
2

⎞
⎟
⎠
−
⎛
⎜
⎝

3
0
0

⎞
⎟
⎠
=
⎛
⎜
⎝

−3
0
2

⎞
⎟
⎠
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Introduction to Vectors Planes

Chapter 1: Introduction to vectors

For reference:
Thus, we can express the Cartesian equation as a parametric
vector form:

x =
⎛
⎜
⎝

3
0
0

⎞
⎟
⎠
+ λ

⎛
⎜
⎝

−3
−4
0

⎞
⎟
⎠
+ µ

⎛
⎜
⎝

−3
0
2

⎞
⎟
⎠
, λ, µ ∈ R.
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Introduction to Vectors Planes

Chapter 1: Introduction to vectors

Planes - From Cartesian to parametric – example (Method 2)

Find a parametric vector form of the plane

4x1 − 3x2 + 6x3 = 12.
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Introduction to Vectors Planes

Chapter 1: Introduction to vectors

For reference:
Alternatively, we can rewrite x1 in terms of x2 and x3 by solving
for x1 in terms of x2 and x3. Doing so gives us

x1 =
1

4
(12 + 3x2 − 6x3) .

Then, our parametric equation becomes:

x =
⎛
⎜
⎝

x1
x2
x3

⎞
⎟
⎠
=
⎛
⎜
⎝

1
4 (12 + 3x2 − 6x3)

x2
x3

⎞
⎟
⎠
.

This boils down to the parametric equation:

x =
⎛
⎜
⎝

3
0
0

⎞
⎟
⎠
+ λ

⎛
⎜
⎝

3
4
1
0

⎞
⎟
⎠
+ µ

⎛
⎜
⎝

−6
4

0
1

⎞
⎟
⎠
, λ, µ ∈ R.

Gerald Huang, Yasin Khan MATH1131/1141 Revision



Introduction to Vectors Planes

Chapter 1: Introduction to vectors

Planes - From parametric to Cartesian

To convert from parametric to Cartesian:

1 We write each component separately (like we did for lines).

2 Eliminate the parameters with our equations.
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Introduction to Vectors Planes

Chapter 1: Introduction to vectors

Planes - From parametric to Cartesian - example

Find the Cartesian form of the plane

x =
⎛
⎜
⎝

1
1
2

⎞
⎟
⎠
+ λ

⎛
⎜
⎝

1
1
1

⎞
⎟
⎠
+ µ

⎛
⎜
⎝

−1
0
2

⎞
⎟
⎠
, λ, µ ∈ R.
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Introduction to Vectors Planes

Chapter 1: Introduction to vectors

For reference:

Let x =
⎛
⎜
⎝

x1
x2
x3

⎞
⎟
⎠

. Then comparing each component separately, we

have the equations:

x1 = 1 + λ − µ, x2 = 1 + λ, x3 = 2 + λ + 2µ.

By inspection, we deduce that

x1 = x2 − µ⇒ µ = x2 − x1.

Substituting this equation into the third equation gives us:

x3 = 2 + (x2 − 1) + 2(x2 − x1) = 3x2 − 2x1 + 1

or:
2x1 − 3x2 + x3 = 1.
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Introduction to Vectors Planes

Chapter 1: Introduction to vectors

Applications - lines and planes

MATH1131/1141 2018 Semester 1 Q2vi
Consider the lines `1 and `2 in R3 defined below.

`1 ∶ x =
⎛
⎜
⎝

2
0
1

⎞
⎟
⎠
+ λ

⎛
⎜
⎝

1
2
−1

⎞
⎟
⎠
, λ ∈ R.

`2 ∶ x1 = 4,
x2 − 4

2
=
x3 + 1

3
.

Show that the lines `1 and `2 intersect.
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Introduction to Vectors Planes

Chapter 1: Introduction to vectors

For reference:
We begin by converting `2 to parametric form. Setting

λ =
x2 − 4

2
=
x3 + 1

3
,

we get the parametric equation:

`2 ∶ x =
⎛
⎜
⎝

4
4
−1

⎞
⎟
⎠
+ λ1

⎛
⎜
⎝

0
2
3

⎞
⎟
⎠
.

By inspection, we see that setting λ = 2 in `1 will give us the
point (4,4,−1). Hence, they intersect at (4,4,−1).
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Vector Geometry Lengths

Chapter 2: Vector Geometry

Lengths

We define the length of a vector a to be

∣a∣ =
√

a21 + ... + a
2
n

where a21 + ... + a
2
n is indicative of the vector components
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Vector Geometry Dot product

Chapter 2: Vector Geometry

Dot Product

The dot product is a form of scalar multiplication on
vector components that will always yield a real number

a ⋅ b = a1b1 + a2b2 + a3b3

We know that if the dot product is 0, then for:

a ⋅ b = ∣a∣∣b∣ cos θ,

we have θ = π
2

Essentially this means given 2 vectors, we can determine
whether or not they are orthogonal
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Vector Geometry Dot product

Chapter 2: Vector Geometry

The dot product - Arithmetic Properties

a ⋅ a = ∣a∣2

Commutative Law: a ⋅ b = b ⋅ a

a ⋅ (λb) = λ(a ⋅ b)

Distributive Law: a ⋅ (b + c) = a ⋅ b + b ⋅ c
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Vector Geometry Projection

Chapter 2: Vector Geometry

Projections

Projections are magnitude of the vector components with
respect to another vector

We define the projection of some vector a on some other
vector b by the following:

projb a =
a ⋅ b

∣b∣2
b
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Vector Geometry Projection

Chapter 2: Vector Geometry

Projections

Projections are essentially the heart of Vector Geometry.
Problem solving questions in this topic will require you to think
critically about how vectors are related to each other through
this concept
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Vector Geometry Projection

Chapter 2: Vector Geometry

Projections - An important result

Let’s look at a more theoretical question that proves a very
common (and important) result

Given a point B and the line x = a + λv, calculate the
shortest distance between the point and the line.
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Vector Geometry Projection

Chapter 2: Vector Geometry

Projections - An important result

Looking at our figure. We already know the altitude
Ð→
PB =

Ð→
AB −

Ð→
AP . We are only interested in the distance or

magnitude of this vector i.e. ∣
Ð→
PB∣.

Here we have to recognise that
Ð→
AB is nothing but

Ð→
PB = b − a −

Ð→
AP

But we know that
Ð→
AP is simply the projection of

Ð→
AB onto

d. I.e.
projd(b − a)

Hence we can express our final result, that is the shortest
distance, by the following expression

∣
Ð→
PB∣ = ∣b − a − projd(b − a)∣
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Vector Geometry Cross product

Chapter 2: Vector Geometry

Cross Product - Definition

Sometimes we may want to find a vector that is not
perpendicular to 1 but 2 vectors.

The cross-product is an arithmetic operation on 2 vectors
that essentially does this

a × b =
⎛
⎜
⎝

a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1

⎞
⎟
⎠
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Vector Geometry Cross product

Chapter 2: Vector Geometry

Cross Product - Arithmetic Properties

a × a = 0, i.e., the cross product of a vector with itself is the
zero vector.

a × b = −b × a. The cross product is not commutative. If
the order of vectors in the cross product is reversed, then
the sign of the product is also reversed.

a × (λb) = λ(ab) and (λa) × b = λ(a × b)

a × (λa) = 0, i.e., the cross product of parallel vectors is zero

Distributive Laws i.e a × (b + c) = a × b + a × c and
(a + a) × c = a × c + b × ac.
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Vector Geometry Cross product

Chapter 2: Vector Geometry

Cross Product - Areas

The parallelogram formed from 2 vectors has an area equivalent
to the magnitude (or length) of the vector yielded from applying
the cross product on the two vectors.
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Vector Geometry Cross product

Chapter 2: Vector Geometry

Cross Product - Volumes

We can extend this understanding of areas in parallelograms to
find volumes of parallelepipeds. Essentially you can think of
these solids as prisms, with the base of a parallelogram.

Like any prism, we know that the volume can be derived
simply by multiplying the base by the perpendicular height

If we write our perpendicular height as a projection of
another vector, then we can derive the expression for the
volume of a parallelopiped as the following:

∣a ⋅ (b × c)∣
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Vector Geometry Planes

Chapter 2: Vector Geometry

Planes - Point Normal Form

Let’s revisit planes, however this time we are going to re-define
them with our understanding of vector geometry

We know that the dot product of the normal vector to a
plane and a vector parallel to the plane will always be 0,
since the two vectors are perpendicular to each other.

We can express a normal vector to a plane as

n =
⎛
⎜
⎝

n1
n2
n3

⎞
⎟
⎠
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Vector Geometry Planes

Chapter 2: Vector Geometry

Planes - Point Normal Form

Likewise a vector parallel to the plane can be written as:

x −
⎛
⎜
⎝

c1
c2
c3

⎞
⎟
⎠

Where c1, c2, c2 are the vector components of a coordinate
vector on the plane

Thus it follows that our point normal form is expressed as:

⎛
⎜
⎝

n1
n2
n3

⎞
⎟
⎠
⋅
⎛
⎜
⎝
x −

⎛
⎜
⎝

c1
c2
c3

⎞
⎟
⎠

⎞
⎟
⎠
= 0
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Vector Geometry Planes

Chapter 2: Vector Geometry

Planes - Converting between forms

Point-normal to Cartesian

Expanding on the definition

⎛
⎜
⎝

n1
n2
n3

⎞
⎟
⎠
.
⎛
⎜
⎝
x −

⎛
⎜
⎝

c1
c2
c3

⎞
⎟
⎠

⎞
⎟
⎠
= 0

Gives

n1x1 + n2x2 + n3x3 = n1c1 + n2c2 + n3c3

= b
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Vector Geometry Planes

Chapter 2: Vector Geometry

Planes - Converting between forms

Cartesian to Point-normal

n1x1 + n2x2 + n3x3 = b

On observation we note, that the coefficients of x terms,
correspond to the vector components of the normal.

To obtain our coordinate vector, i.e. c we need to find a
point that satisfies the plane.
We can do this by setting fixed values for any 2 variables (0)
in our Cartesian equation and solving for the third.
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Vector Geometry Planes

Chapter 2: Vector Geometry

Planes - Converting between forms

Parametric to Point-normal

Our 2 components for the point-normal form are as the
name suggests, a point/coordinate and a normal vector

In parametric form we have,

x = a + λ1u + λ2v

So we know to obtain a normal vector we find the Cross
product of u and v i.e. u × v

Our coordinate vector however can just be taken as a

We have a Point and a normal, thus we plug that in to get
our point-normal form.

Gerald Huang, Yasin Khan MATH1131/1141 Revision



Vector Geometry Planes

Chapter 2: Vector Geometry

Planes - Converting between forms

Point-normal to Parametric

First convert Point-normal to Cartesian as shown in
previous slides

then convert Cartesian to parametric form as explained
in chapter 1
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Vector Geometry Planes

Chapter 2: Vector Geometry

Planes - Converting between forms

Parametric to Cartesian

Previously the only method of conversion was through
expanding the components to gain a system of linear
equations, and eliminating the parametric

An easier way is to convert the parametric vector
form into point-normal form.

Then we simplify convert from point-normal to
Cartesian

It may seem longer because this is a two step method,
however the algebra is much simpler.
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Vector Geometry Planes

Chapter 3: Complex numbers

MATH 1131 NOVEMBER 2010 Q2 (vii)

Suppose u, v and w are distinct non-zero vectors with the
property that

projw(u) = projw(v)

Prove that u − v is perpendicular to w
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Vector Geometry Planes

Chapter 3: Complex numbers

Condition: projw(u) = projw(v)

1 Recall ,

projb a =
a ⋅ b

∣b∣2
b

2 Thus,
u ⋅w

∣w∣2
w =

v ⋅w

∣w∣2
w

3 Simplifying we have

u ⋅w − v ⋅w = 0

w ⋅ (u − v) = 0

4 By definition of dot product u − v is perpendicular to w
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Vector Geometry Planes

Chapter 3: Complex numbers

MATH 1141 JUNE 2012 Q2 (iii)

Suppose that u and v are non-zero, non-parallel vectors of the
same magnitude. Prove that u − v is perpendicular to u + v
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Vector Geometry Planes

Chapter 3: Complex numbers

We don’t really know where to start, so lets pretend we know the
answer and work backwards until we get to a point we are
familiar with.
If they are perpendicular then

(u − v) ⋅ (u + v) = 0

(u ⋅ u) + (u ⋅ v − v ⋅ u) − (v ⋅ v) = 0

u ⋅ u + v ⋅ v = 0

∣u∣
2
− ∣v∣

2
= 0

∣u∣
2
− ∣u∣

2
= 0

In our actual proof, we would write it backwards.
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Vector Geometry Planes

Chapter 3: Complex numbers

Tip

We learnt a useful strategy when we can’t immediately
formulate how to answer the question.

Instead of answering the question traditionally. Why not
assume you have answered the question, and figure out how
you would have got to that solution, by working backwards.

This is called a ’Discovery’, essentially playing around with
the answer until it looks familiar.
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Complex numbers
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Complex numbers Introduction to complex numbers

Chapter 3: Complex numbers

A review of the system

Just like with our real numbers, we can add, subtract, multiply
and divide complex numbers.

(x + iy) ± (a + ib) = (x ± a) + i(y ± b)

(x + iy)(a + ib) = (ax − by) + i(bx + ay) Distributive Law
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Complex numbers Introduction to complex numbers

Chapter 3: Complex numbers

Dividing Complex Numbers

The conjugate of a complex number z = a + ib is given by
z̄ = a − ib. We flip the imaginary part.

x + iy

a + ib
=
x + iy

a + ib
×
a − ib

a − ib

Note the technique when dividing complex numbers is to
multiply the numerator and denominator by the complex
conjugate of the denominator.

(x + iy)(a − ib)

a2 − b2

We have realised the denominator for further manipulation
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Complex numbers Polar form of a complex number

Chapter 3: Complex numbers

Properties of Polar Form - Modulus

The Cartesian form only gives information about the coordinates
of a complex number. Polar form however,

Considers the complex number as a vector

An associated modulus - r and argument - θ

We define the polar form as: r(cos θ + i sin θ)

Hence it follows that x = r cos θ and y = r sin θ and
r =

√
x2 + y2. Allows conversion between the 2 forms

We can also define reiθ

Polar form allows us to easily manipulate vectors through
their geometric properties
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Complex numbers Polar form of a complex number

Chapter 3: Complex numbers

Properties of Polar Form

Conjugate in Polar Form

The conjugate in Polar Form is given by

z = r cos θ − r sin θ

= r cos (−θ) + r sin (−θ)

= re−iθ

Geometrically this means that the conjugate of a complex
number in Polar form has a negative argument and thus
is reflected across the Real axis
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Complex numbers Polar form of a complex number

Chapter 3: Complex numbers

Properties of Polar Form

Modulus Properties

∣a∣∣b∣ = ∣ab∣
∣a∣
∣b∣ = ∣ab ∣

∣z∣n = ∣zn∣

zz̄ = ∣z∣2

z̄ = 1
z iff ∣z∣ = 1
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Complex numbers Polar form of a complex number

Chapter 3: Complex numbers

Properties of Polar Form

Argument Properties

arg(ab) = arg(a) + arg(b)

arg (a
b
) = arg a − arg b

arg(z)n = narg(z)
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Complex numbers Polar form of a complex number

Chapter 3: Complex numbers

Properties of Polar Form

De Moivre’s Theorem
The above properties are suffice for use to multiply and divide
complex numbers in polar form.
However, polar form also allows simple manipulation of powers of
complex numbers through De Moivre’s Theorem

(r(cos θ + i sin θ))n = rn(cosnθ + i sinnθ)
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Complex numbers Roots of unity

Chapter 3: Complex numbers

Roots of Unity

With the aid of De Moivre’s theorem we can know plot the roots
of some basic complex numbers. e.g. zn = 1

Let z = reiθ and convert 1 into a polar vector i.e. ei0

We have: rnei(nθ) = e0i (By De Moivre’s Theorem)

Equating Modulus and Argument gives, r = 1 and θ = 0+2πk
n .

Since we can add any multiple of 2π

Our n roots of unity are

z = ei(
0+2πk
n
)

For distinct roots, we choose consecutive values of k such
that θ lies in (−π,π]
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Complex numbers Roots of unity

Chapter 3: Complex numbers

Locus and Regions - Modulus
.

∣z − ω∣ = a. Circle with origin at ω and radius of a

∣z − ω∣ = ∣z − v∣. Line of perpendicular bisector between the
points of ω and v

If we had an inequality, then these loci would become
regions instead

We would consider the region inside or outside of the circle
for the first point

And we would consider the region on either side of the
perpendicular bisector for the second point
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Complex numbers Roots of unity

Chapter 3: Complex numbers
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Complex numbers Roots of unity

Chapter 3: Complex numbers
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Complex numbers Locus and regions

Chapter 3: Complex numbers

Locus and Regions - Argument

α ≤ arg(z − ω) ≤ β
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Complex numbers Locus and regions

Chapter 3: Complex numbers

Locus and Regions - Re(z) and Im(z)

Re(z) = a Corresponds to the line x = a

Im(z) = a Corresponds to the line y = a

As discussed before, these become regions if we replace the
equality with an inequality
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Complex numbers Trigonometric applications

Chapter 3: Complex numbers

Trig Applications

Converting cos(nθ) into terms of cos θ

Express (cos θ + i sin θ)n as cos(nθ) + i sin(nθ)

Express (cos θ + i sin θ)n using the binomial theorem and
combine real and imaginary parts

Equate expressions 1 and 2.

For an expression of cos(nθ), equate Real parts and for an
expression of sin(nθ), equate Imaginary parts
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Complex numbers Trigonometric applications

Chapter 3: Complex numbers

Trig Applications

Q) Convert cos(3θ) into terms of cos θ

1 Expand (cos θ + i sin θ)3 one way using DeMoivre’s and
another way with binomial theorem

2 cos(3θ) + i sin(3θ)

3 cos3 θ + 3i cos2 θ sin θ − 3 cos θ sin2 θ − i sin3 θ

4 Comparing Real parts from (2) and (3)

cos(3θ) = cos3 θ − 3 cos θ sin2 θ

= cos3 θ − 3 cos θ(1 − cos2 θ)

= 4 cos3 θ − 3 cos θ
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Complex numbers Trigonometric applications

Chapter 3: Complex numbers

Trig Applications

Converting cosn(θ) into linear terms
Proposition: zj + 1

zj
= 2 cos(jθ) (since ∣z∣ = 1)

Let z = cos θ + i sin θ

We know cosn θ = (1
2
(z + 1

z
))
n

Expand the RHS using the binomial theorem

Group terms in the form of zj + 1
zj

and write them as
2 cos(jθ). (Using our Proposition)

Similarly sinn θ = ( 1
2i

(z − 1
z
))
n
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Complex numbers Trigonometric applications

Chapter 3: Complex numbers

Trig Applications

Q) Convert cos3 θ into linear terms

1 Let z = cos θ + i sin θ

2 We know,

cos3 θ = (
1

2
(z +

1

z
))

3

=
1

8
((z3 +

1

z3
) + 3(z +

1

z
))

=
1

8
(2 cos (3θ) + 6 cos (3θ))
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Complex numbers Polynomials

Chapter 3: Complex numbers

Complex Polynomials

Factorisation Theorem

Every polynomial of p(z) of degree n ≥ 1 can be factorised
into linear factors of the form

p(z) = a(z − α1)...(z − αn)

Complex Conjugate Theorem

if (z − α) is a factor of p(z) then so is (z − ᾱ)
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Complex numbers Polynomials

Chapter 3: Complex numbers

Complex Polynomials

Factorising into Quadratic Factors with real coefficients

(z − ω)(z − ω̄) = z2 − 2 Re(ω)z + ∣ω∣2

Note none of the coefficients are complex numbers!!!.
This identity is very important as it enables us to convert
complex linear factors into quadratic factors with only real
coefficients
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Complex numbers Polynomials

Chapter 3: Complex numbers

MATH 1141 JUNE 2015 Q4 (iii)

a) Use De Moivre’s theorem to express sin 5θ as a polynomial in
x = sin θ

1 Expand (cos θ + i sin θ)5 using the binomial theorem.

2 Apply De Moivre’s on (cos θ + i sin θ)5

3 Equating imaginary parts in 1 and 2 yields

sin 5θ = 16 sin5
(x) − 20 sin3

(x) + 5 sin(x)

4 Let x = sin(θ) therefore

sin(5θ) = 16x5 − 20x3 + 5x

where x = sin θ
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Complex numbers Polynomials

Chapter 3: Complex numbers

MATH 1141 JUNE 2015 Q4 (iii)

b) Consider the polynomial p(x) = 16x5 − 20x3 + 5x − 1. Show
that sin( π10) is a root of p(x).

1 Use part a) to simplify the polynomial into a trig expression.

2 We have p(x) = sin(5θ) − 1 where x = sin θ

3 Hence the roots occur when sin(5θ) = 1

4 At θ = π
10 the expression equals 1. Hence sin π

10 is a root of
p(x)
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Complex numbers Polynomials

Chapter 3: Complex numbers

MATH 1141 JUNE 2015 Q4 (iii)

c) Using the fact

16x5 − 20x3 + 5x − 1 = (x − 1)(4x2 + 2x − 1)2

find the distinct roots of p(x)

1 We know that x = 1 is a root, to find the other roots we
simply apply the quadratic formula on the second factor.

2 The distinct roots of p(x) are: z = 1, −1+
√

5
4 , −1+

√

5
4
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Complex numbers Polynomials

Chapter 3: Complex numbers

MATH 1141 JUNE 2015 Q4 (iii)

d) Evaluate sin π
10 in surd form

1 We know sin π
10 is the smallest positive root of p(x)

2 By equating the smallest positive root from part c) we

conclude that sin π
10 =

−1+
√

5
4
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Complex numbers Polynomials

Chapter 3: Complex numbers

MATH 1141 JUNE 2012 Q2 (iii)

Suppose that z lies on the unit circle in the complex plane.
a) Show that z + 1

z is real

1 z lies on the unit circle, therefore ∣z∣ = 1

2 Hence z̄ = 1
z

3 Thus the expression now becomes

z + z̄

2 Re(z)

4 Which is real. QED
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Complex numbers Polynomials

Chapter 3: Complex numbers

MATH 1141 JUNE 2012 Q2 (iii)

Suppose that z lies on the unit circle in the complex plane.
b) Find the maximum value of z + 1

z

1 Recall, that ∣z∣ = 1

2 Let z = cos θ + i sin θ

3 Thus
z + z̄ = 2 Re(z) = 2 cos θ

4 The maximum value is 2.
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System of linear equations Introduction to linear equations

Chapter 4: System of linear equations

You could already solve a low number of linear equations. For
example:

x + y = 9

2x − y = 0

What about:

x + y + z = 9

2x − y + 2z = 0

3x + y + 3z = 10

Still doable? Ok, what about:

x + y + z = 9

2x − y + 2z = 0

3x + y + 3z = 10

4x − y + 4z = 20Gerald Huang, Yasin Khan MATH1131/1141 Revision



System of linear equations Introduction to linear equations

Chapter 4: System of linear equations

You could already solve a low number of linear equations. For
example:

x + y = 9

2x − y = 0

What about:

x + y + z = 9

2x − y + 2z = 0

3x + y + 3z = 10

Still doable? Ok, what about:

x + y + z = 9

2x − y + 2z = 0

3x + y + 3z = 10

4x − y + 4z = 20
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System of linear equations Introduction to linear equations

Chapter 4: System of linear equations

You could already solve a low number of linear equations. For
example:

x + y = 9

2x − y = 0

What about:

x + y + z = 9

2x − y + 2z = 0

3x + y + 3z = 10

Still doable? Ok, what about:

x + y + z + a = 9

2x − y + 2z + 2a = 0

3x + y + 3z − 3a = 10

4x − y + 4z + 4a = 20
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System of linear equations Augmented matrix

Chapter 4: System of linear equations

Revising the augmented matrix

Recall that the augmented matrix look like:

(
a b e
c d f

)

and can be read as:

ax + by = e.

cx + dy = f.

Gerald Huang, Yasin Khan MATH1131/1141 Revision



System of linear equations Row reduction

Chapter 4: System of linear equations

Elementary row operations

We’ll look at four ways of performing elementary row operations:

1 swapping two rows.

2 adding or subtracting two rows together.

3 multiplying a row by a scalar.

4 a combination of the three.
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System of linear equations Row reduction

Chapter 4: System of linear equations

Swapping two rows

We can swap two rows. The notation for swapping two rows is:

(
a b c
d e f

)
R1←→R2
ÐÐÐÐ→ (

d e f
a b c

)

This is very useful for situations where a particular column is
non leading as we are trying to reduce it into row echelon. For
example:

(
0 1
1 0

)
R1⇔R2
ÐÐÐÐ→ (

1 0
0 1

) .

⎛
⎜
⎝

1 2 3

0 0 1
0 3 1

⎞
⎟
⎠

R2⇔R3
ÐÐÐÐ→

⎛
⎜
⎝

1 2 3
0 3 1
0 0 1

⎞
⎟
⎠
.
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System of linear equations Row reduction

Chapter 4: System of linear equations

Adding/subtracting two rows together

We can also add or subtract two rows together. The notation for
this is:

(
a b c
a b c

)
R1=R1+R2
ÐÐÐÐÐÐ→ (

2a 2b 2c
a b c

)

Note that only the first row is affected.
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System of linear equations Row reduction

Chapter 4: System of linear equations

Multiplying a row by a scalar

Similarly, we could also multiply a single row by a nonzero scalar.
Doing so, we get this notation.

(
a b c
d e f

)
R1=2R1
ÐÐÐÐ→ (

2a 2b 2c
d e f

)

Also, note that only the first row is affected.
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System of linear equations Row reduction

Chapter 4: System of linear equations

Gaussian elimination – reduction to row echelon

1 We perform a combination of elementary row operations
onto the matrix.

2 The idea is that we want to write in a form similar to:

⎛
⎜
⎝

1 a b
0 c d

0 0 1

⎞
⎟
⎠
.
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System of linear equations Row reduction

Chapter 4: System of linear equations

Back substitution

1 When we have the matrix in row echelon form, we can just
read off the solutions from the last row up.

2 We substitute each solution into the equations above and
solve for the rest!

We will do examples of these so don’t worry if it’s not clicking!
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System of linear equations Row reduction

Chapter 4: System of linear equations

Reducing down to row echelon - example

MATH1131 2014 Semester 2 Q4iii
The current ages of Xena, Yenny and Zac are x, y and z years
respectively. You are given that 48 years ago Zac’s age was triple
that of Yenny’s age at that time.

a) Explain why 3y − z = 96.

b) It is also known that the sum of their current ages is 200
and currently Xena’s age is the sum of Yenny’s and Zac’s
ages. Set up a system of 3 equations in the three unknowns
x, y and z.

c) By reducing your system to echelon form and back
substituting, find the current ages of Xena, Yenny and Zac.
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System of linear equations Row reduction

Chapter 4: System of linear equations

Reducing down to row echelon - example

MATH1131 2014 Semester 2 Q4iii
The current ages of Xena, Yenny and Zac are x, y and z years
respectively. You are given that 48 years ago Zac’s age was triple
that of Yenny’s age at that time.

a) Explain why 3y − z = 96.

48 years ago, Yenny’s age was y − 48. But at that time, Zac’s age
was triple Yenny’s age. So,

z − 48 = 3(y − 48)

z = 3y − 144 + 48.

∴3y − z = 96.
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System of linear equations Row reduction

Chapter 4: System of linear equations

Reducing down to row echelon - example

MATH1131 2014 Semester 2 Q4iii
The current ages of Xena, Yenny and Zac are x, y and z years
respectively. You are given that 48 years ago Zac’s age was triple
that of Yenny’s age at that time.

b) It is also known that the sum of their current ages is 200
and currently Xena’s age is the sum of Yenny’s and Zac’s
ages. Set up a system of 3 equations in the three unknowns
x, y and z.

The set of equations are:

3y − z = 96. (1)

x + y + z = 200. (2)

x − y − z = 0. (3)
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System of linear equations Row reduction

Chapter 4: System of linear equations

Reducing down to row echelon - example

MATH1131 2014 Semester 2 Q4iii
The current ages of Xena, Yenny and Zac are x, y and z years
respectively. You are given that 48 years ago Zac’s age was triple
that of Yenny’s age at that time.

c) By reducing your system to echelon form and back
substituting, find the current ages of Xena, Yenny and Zac.

From part b), we can form an augmented matrix:

⎛
⎜
⎝

0 3 −1 96
1 1 1 200
1 −1 −1 0

⎞
⎟
⎠
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System of linear equations Row reduction

Chapter 4: System of linear equations

Reducing down to row echelon - example

MATH1131 2014 Semester 2 Q4iii
The current ages of Xena, Yenny and Zac are x, y and z years
respectively. You are given that 48 years ago Zac’s age was triple
that of Yenny’s age at that time.

c) By reducing your system to echelon form and back
substituting, find the current ages of Xena, Yenny and Zac.

In reduced row echelon, we have:

⎛
⎜
⎝

1 0 0 100
0 1 0 49
0 0 1 51

⎞
⎟
⎠

∴x = 100, y = 49, z = 51
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System of linear equations Number of solutions

Chapter 4: System of linear equations

Deducing the number of solutions

Suppose you have an augmented matrix in row echelon form.
Then:

1 there exists no solutions if the right hand side is a leading
column.

2 there exists a unique solution if every left hand column
is a leading column AND the right hand side is not a
leading column.

3 there exists infinitely many solutions if there is a column on
the left side that’s not leading.
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System of linear equations Number of solutions

Chapter 4: System of linear equations

Deducing the number of solutions - example

MATH1131 2015 Semester 2 Q4iii
A system of three equations in three unknowns x, y and z has
been reduced to the following echelon form:

⎛
⎜
⎝

1 −2 1 4
0 3 2 0
0 0 (α − 3)(α − 1) α − 1

⎞
⎟
⎠

a) For which value of α will the system have no solution?

b) For which value of α will the system have infinitely many
solutions?

c) For the value determined in b), find the general solution.
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System of linear equations Number of solutions

Chapter 4: System of linear equations

Deducing the number of solutions - example

MATH1131 2015 Semester 2 Q4iii
A system of three equations in three unknowns x, y and z has
been reduced to the following echelon form:

⎛
⎜
⎝

1 −2 1 4
0 3 2 0
0 0 (α − 3)(α − 1) α − 1

⎞
⎟
⎠

a) For which value of α will the system have no solution?

If the system has no solutions, then that means the right hand
side column is leading column. This implies that
(α − 3)(α − 1) = 0 and α − 1 ≠ 0. So, we deduce that α = 3
produces a system with no solutions.
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System of linear equations Number of solutions

Chapter 4: System of linear equations

Deducing the number of solutions - example

MATH1131 2015 Semester 2 Q4iii
A system of three equations in three unknowns x, y and z has
been reduced to the following echelon form:

⎛
⎜
⎝

1 −2 1 4
0 3 2 0
0 0 (α − 3)(α − 1) α − 1

⎞
⎟
⎠

b) For which value of α will the system have infinitely many
solutions?

If the system have infinitely many solutions, then a left hand
column is not leading and the right hand column is not leading.
So, (α − 3)(α − 1) = 0 and α − 1 = 0. Thus, we get α = 1.
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System of linear equations Number of solutions

Chapter 4: System of linear equations

Deducing the number of solutions - example

MATH1131 2015 Semester 2 Q4iii
A system of three equations in three unknowns x, y and z has
been reduced to the following echelon form:

⎛
⎜
⎝

1 −2 1 4
0 3 2 0
0 0 (α − 3)(α − 1) α − 1

⎞
⎟
⎠

c) For the value determined in b), find the general solution.

Row 2 tells us that 3y + 2z = 0⇒ 3y = −2z. Row 1 tells us that
x − 2y + z = 4. Using these two equations, we end up with:

2x − 7y = 8.
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System of linear equations Number of solutions

Chapter 4: System of linear equations

Application – span of multiple vectors

We say that a vector V belongs in the span of multiple vectors if
there exists a linear combination of V using the vectors in the
spanning set.
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System of linear equations Number of solutions

Chapter 4: System of linear equations

Application – span of multiple vectors

For example:

⎛
⎜
⎝

6
2
7

⎞
⎟
⎠

is in the span of
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

⎛
⎜
⎝

6
0
0

⎞
⎟
⎠
,
⎛
⎜
⎝

0
2
0

⎞
⎟
⎠
,
⎛
⎜
⎝

0
0
7

⎞
⎟
⎠

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

since
⎛
⎜
⎝

6
2
7

⎞
⎟
⎠
=
⎛
⎜
⎝

6
0
0

⎞
⎟
⎠
+
⎛
⎜
⎝

0
2
0

⎞
⎟
⎠
+
⎛
⎜
⎝

0
0
7

⎞
⎟
⎠
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System of linear equations Number of solutions

Chapter 4: System of linear equations

Span of multiple vectors – example

Does

⎛
⎜
⎜
⎜
⎝

3
0
5
6

⎞
⎟
⎟
⎟
⎠

belong to the span of

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

⎛
⎜
⎜
⎜
⎝

1
−2
3
2

⎞
⎟
⎟
⎟
⎠

,

⎛
⎜
⎜
⎜
⎝

0
4
1
2

⎞
⎟
⎟
⎟
⎠

⎫⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎭

?
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System of linear equations Number of solutions

Chapter 4: System of linear equations

For reference:
To see if the vector belong to the span, we need to find a linear
combination, namely:

λ

⎛
⎜
⎜
⎜
⎝

1
−2
3
2

⎞
⎟
⎟
⎟
⎠

+ µ

⎛
⎜
⎜
⎜
⎝

0
4
1
2

⎞
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎝

3
0
5
6

⎞
⎟
⎟
⎟
⎠

.

Placing this into an augmented matrix and row reducing, we get:

⎛
⎜
⎜
⎜
⎝

1 0 3
0 4 6
0 0 22
0 0 0

⎞
⎟
⎟
⎟
⎠

.

Since the right hand column is a leading column, we deduce that
there are no solutions. So the vector does not belong in the
span.
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Matrices Matrix arithmetic

Chapter 5: Matrices

Matrix arithmetic

A matrix has a number of columns and rows.

1 m × n means m rows and n columns. So, a 2 × 3 matrix
means 2 rows and 3 columns.

2 Number of rows = number of columns means the matrix is
square.

3 Two matrices can be added together if they have the same
number of columns AND rows.

4 Matrices are NOT commutative. That is:

AB ≠ BA.
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Matrices Matrix arithmetic

Chapter 5: Matrices

Definition (matrix multiplication)

Let A be an m × n matrix and X be an n × p matrix and let xj
be the jth column of X. Then the product B = AX is the m × p
matrix whose jth column bj is given by:

bj = AXj for 1 ≤ j ≤ p.

..uh what?
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Matrices Matrix arithmetic

Chapter 5: Matrices

Definition (matrix multiplication)

Let A be an m × n matrix and X be an n × p matrix and let xj
be the jth column of X. Then the product B = AX is the m × p
matrix whose jth column bj is given by:

bj = AXj for 1 ≤ j ≤ p.
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Matrices Matrix arithmetic

Chapter 5: Matrices

Definition (matrix multiplication)

Let A be an m × n matrix and X be an n × p matrix and let xj
be the jth column of X. Then the product B = AX is the m × p
matrix whose jth column bj is given by:

bj = AXj for 1 ≤ j ≤ p.

Alternate definition (Matrix multiplication)

Two matrices can be multiplied together if and only if:

1 The number of columns of the first matrix matches the
number of rows of the second matrix.

2 The resulting matrix will be the rows of the first matrix
multiplied by the column of the second matrix.
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Matrices Matrix arithmetic

Chapter 5: Matrices

Matrix multiplication - example

MATH1131 2018 Semester 2 Q4iii
Consider the matrices

C = (
1 1 1
1 0 −1

) and D =
⎛
⎜
⎝

1 −4
0 10
1 −6

⎞
⎟
⎠
.

Calculate CD.
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Matrices Matrix arithmetic

Chapter 5: Matrices

For reference:
First, we see that C is a 2 × 3 matrix while D is a 3 × 2 matrix.
Thus, CD is compatible. Next, we observe that CD will be a
2 × 2 matrix. Performing matrix multiplication, we get:

CD = (
1 × 1 + 1 × 0 + 1 × 1 1 × −4 + 1 × 10 + 1 × −6

1 × 1 + 0 × 0 + −1 × 1 1 × −4 + 0 × 10 + −1 × −6
)

= (
2 0
0 2

) .
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Matrices Transposes

Chapter 5: Matrices

Transposes of matrices and properties

Transposes have the notation: AT .

1 Flip the columns and rows, so that columns become rows
and rows become columns. For example:

A = [
1 2
3 4

] ,AT = [
1 3
2 4

] .

2 (AB)T = BTAT .

3 (AT )T = A.

4 (A +B)T = AT +BT .

5 AT = A Ô⇒ A is symmetric.

6 AT = −A Ô⇒ A is skew-symmetric.
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Matrices Determinants

Chapter 5: Matrices

Determinants of matrices and properties

Determinants have the notation: det(A) = ∣A∣. Note that they’re
only defined for square matrices.

1 For a 2 × 2 matrix

A = (
a b
c d

)

the determinant is:

det(A) = ad − bc.
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Matrices Determinants

Chapter 5: Matrices

Determinants of matrices and properties

Determinants have the notation: det(A) = ∣A∣. Note that they’re
only defined for square matrices.

1 For a 2 × 2 matrix

A = (
a b
c d

)

the determinant is:

det(A) = ad − bc.
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Matrices Determinants

Chapter 5: Matrices

Determinants of matrices and properties

Determinants have the notation: det(A) = ∣A∣. Note that they’re
only defined for square matrices.

1 For a 3 × 3 matrix

A =
⎛
⎜
⎝

a b c
d e f
g h i

⎞
⎟
⎠

the determinant is:

det(A) = a(ei − fh) − b(di − fg) + c(dh − eg).

Be careful about sign changes!

Determinants are tricky because they have sign changes! They
follow the pattern: +/-/+/. . .
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Matrices Determinants

Chapter 5: Matrices

Determinants - 3x3 example

MATH1131 2014 Semester 1 Q3ii

Let M =
⎛
⎜
⎝

1 −1 1
2 1 3
−1 2 1

⎞
⎟
⎠

.

1 Evaluate the determinant of M .

Determinant comes out to be:

det(M) = 1(1 − 6) + 1(2 + 3) + 1(4 + 1)

= −5 + 5 + 5

= 5.
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Matrices Determinants

Chapter 5: Matrices

Determinants - 3x3 example

MATH1131 2014 Semester 1 Q3ii

Let M =
⎛
⎜
⎝

1 −1 1
2 1 3
−1 2 1

⎞
⎟
⎠

.

1 Evaluate the determinant of M .

Determinant comes out to be:

det(M) = 1(1 − 6) + 1(2 + 3) + 1(4 + 1)

= −5 + 5 + 5

= 5.
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Matrices Determinants

Chapter 5: Matrices

Determinants of matrices and properties

Determinants have the notation: det(A) = ∣A∣. Note that they’re
only defined for square matrices.

1 For a 4 × 4 matrix

A =

⎛
⎜
⎜
⎜
⎝

a b c d
e f g h
i j k l
m n o p

⎞
⎟
⎟
⎟
⎠

the determinant is: uhh.. let’s not go into that.
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Matrices Determinants

Chapter 5: Matrices

Using row reduction to find the determinant

For higher dimensions, calculating the determinant by hand
becomes ew! So let’s find another way to find a determinant.
Why don’t we try to find the determinant through row
reduction? Note that:

1 Multiplying a row by a scalar also scales the determinant.
For example, performing the row operation: R1 ⇒ 2R1

scales the determinant by 2.

2 Swapping two rows negates the determinant. For example:
R1⇔ R2 Ô⇒ −det(A).

3 Adding two rows does not change the determinant.

4 The determinant just becomes the product of the diagonal
entries! How easy is that?!?!?
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Matrices Determinants

Chapter 5: Matrices

Using row reduction to find the determinant – example

Find the determinant of:

⎛
⎜
⎝

0 3 6
1 5 −2
1 2 −4

⎞
⎟
⎠
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Matrices Determinants

Chapter 5: Matrices

Using row reduction to find the determinant – example

Find the determinant of:

⎛
⎜
⎝

0 3 6
1 5 −2
1 2 −4

⎞
⎟
⎠

The row operations you will perform may be:

R1 = R1/3.

This will allow us to bring out the three from outside the
determinant.

R1⇔ R2.

This will negate the sign of the determinant.

R3 = R1 −R3.

This will do nothing to the determinant.
When we put all of these together, the determinant becomes −12.Gerald Huang, Yasin Khan MATH1131/1141 Revision



Matrices Determinants

Chapter 5: Matrices

Using row reduction to find the determinant – example

Find the determinant of:

⎛
⎜
⎝

0 3 6
1 5 −2
1 2 −4

⎞
⎟
⎠

When we put all of these together, the determinant becomes −12.
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Matrices Determinants

Chapter 5: Matrices

Determinants of matrices and properties

Determinants have the notation: det(A) = ∣A∣. Note that they’re
only defined for square matrices.

1 det(A) = det (AT ) .

2 det(AB) = det(A)det(B).
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Matrices Determinants

Chapter 5: Matrices
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Matrices Determinants

Chapter 5: Matrices

Be careful!

Even though det(AB) = det(A)det(B), we can’t say the same
about A +B. That is, in general,

det(A +B) ≠ det(A) + det(B).

We’re going to see an example of where this doesn’t hold.
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Matrices Determinants

Chapter 5: Matrices

Determinant - example

MATH1131 2018 Semester 2 Q4i
Let A and B be 2 × 2 matrices.

1 Use a counterexample to show that det(A +B) does not
equal to det(A) + det(B) in general.

Let A = (
1 0
0 0

) and B = (
0 0
0 1

). Determinant of both is 0.

A +B = (
1 0
0 0

) + (
0 0
0 1

) = (
1 0
0 1

) and ∣A +B∣ = 1.
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Matrices Determinants

Chapter 5: Matrices

Determinant - example

MATH1131 2018 Semester 2 Q4i
Let A and B be 2 × 2 matrices.

1 Use a counterexample to show that det(A +B) does not
equal to det(A) + det(B) in general.

Let A = (
1 0
0 0

) and B = (
0 0
0 1

). Determinant of both is 0.

A +B = (
1 0
0 0

) + (
0 0
0 1

) = (
1 0
0 1

) and ∣A +B∣ = 1.
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Matrices Determinants

Chapter 5: Matrices

Determinant - example

MATH1131 2018 Semester 2 Q4i
Let A and B be 2 × 2 matrices.

1 Use a counterexample to show that det(A +B) does not
equal to det(A) + det(B) in general.

Let A = (
1 0
0 0

) and B = (
0 0
0 1

). Determinant of both is 0.

A +B = (
1 0
0 0

) + (
0 0
0 1

) = (
1 0
0 1

) and ∣A +B∣ = 1.

Gerald Huang, Yasin Khan MATH1131/1141 Revision



Matrices Determinants

Chapter 5: Matrices

Determinant - another example

MATH1141 2013 Semester 1 Q3iii
Which of the following statements are true for all non-zero 2 × 2
matrices? For those statements which are not always true, give a
counter example.

a) det(AB) = det(BA).

b) If det(AB) = det(AC) then det(B) = det(C).

c) If AB = AC then B = C.
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Matrices Determinants

Chapter 5: Matrices

Determinant - another example

MATH1141 2013 Semester 1 Q3iii
Which of the following statements are true for all non-zero 2 × 2
matrices? For those statements which are not always true, give a
counter example.

a) det(AB) = det(BA).

b) If det(AB) = det(AC) then det(B) = det(C).

c) If AB = AC then B = C.

a) Yes. Exploit the property det(AB) = det(A)det(B).

b) No. Counter example: A = (
1 0
0 0

) ,B = (
1 0
0 1

) ,C = (
2 0
0 2

).
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Matrices Determinants

Chapter 5: Matrices

Determinant - another example

MATH1141 2013 Semester 1 Q3iii
Which of the following statements are true for all non-zero 2 × 2
matrices? For those statements which are not always true, give a
counter example.

a) det(AB) = det(BA).

b) If det(AB) = det(AC) then det(B) = det(C).

c) If AB = AC then B = C.

c) No. Counter example: A = (
1 0
0 0

) ,B = (
0 1
1 0

) ,C = (
0 1
0 0

).
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Matrices Determinants

Chapter 5: Matrices

Some more interesting properties of determinants

1 If an entire row or column is 0, then the determinant of the
matrix is 0.

2 If a row is a multiple of another row, then the determinant
of the matrix is 0.

3 If a column is a multiple of another column, then the
determinant of the matrix is 0.

4 Suppose that we have A = n × n matrix. Then

det(mA) =mndet(A).

..what hax.
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Matrices Determinants

Chapter 5: Matrices

Some more interesting properties of determinants

1 If an entire row or column is 0, then the determinant of the
matrix is 0.

2 If a row is a multiple of another row, then the determinant
of the matrix is 0.

3 If a column is a multiple of another column, then the
determinant of the matrix is 0.

4 Suppose that we have A = n × n matrix. Then

det(mA) =mndet(A).

..what hax.
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Matrices Inverses

Chapter 5: Matrices

Inverses of matrices and properties

A matrix A has an inverse if and only if:

det(A) ≠ 0.

Alternatively, we can also say that A is invertible.

1 AA−1 = I.

2 (A−1)
−1

= A.

3 det (A−1) = (det(A))−1.
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Matrices Inverses

Chapter 5: Matrices

Inverse of a 2 × 2 matrix

The inverse of a 2 × 2 matrix

A = (
a b
c d

)

is given by:

A−1 =
1

det(A)
(
d −b
−c a

)
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Matrices Inverses

Chapter 5: Matrices

Inverse of a 2 × 2 matrix – example

MATH1131 2014 Semester 1 Q3ii

Let N = (
3 1
4 2

).

Write down the inverse of N .
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Matrices Inverses

Chapter 5: Matrices

Inverse of a 2 × 2 matrix – example

MATH1131 2014 Semester 1 Q3ii

Let N = (
3 1
4 2

).

Write down the inverse of N .

The inverse of a matrix exists if its determinant is not 0.
Calculating the determinant gives us 2, so there exists an inverse.
Thus, the inverse is:

N−1 =
1

det(N)
(

2 −1
−4 3

)

=
1

2
(

2 −1
−4 3

) .
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Matrices Inverses

Chapter 5: Matrices

Using row reduction to find the inverse

1 Augment the matrix in the form ( A I ).

2 We row reduce the matrix so that we have ( I A−1 ).

3 The right hand matrix is the inverse of A.

We’ll do a few examples, starting with 2 × 2 matrices.
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Matrices Inverses

Chapter 5: Matrices

Using row reduction to find the inverse – 2 × 2 matrix

Find the inverse of A, where

A = (
3 1
4 2

)
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Matrices Inverses

Chapter 5: Matrices

Using row reduction to find the inverse – 2 × 2 matrix

Find the inverse of A, where

A = (
3 1
4 2

)

Augmenting the matrix, we have:

(
3 1 1 0
4 2 0 1

) .

We aim to have the left side become the identity matrix.
Performing elementary row operations, we get:

(
1 0 1 −1/2
0 1 −2 3/2

) .
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Matrices Inverses

Chapter 5: Matrices

Using row reduction to find the inverse – 2 × 2 matrix

Find the inverse of A, where

A = (
3 1
4 2

)

So the inverse of A is the right side matrix:

(
1 −1/2
−2 3/2

) =
1

2
(

2 −1
−4 3

)

as we saw before.
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Matrices Inverses

Chapter 5: Matrices

Using row reduction to find the inverse – 3 × 3 matrix

Find the inverse of A, where

A =
⎛
⎜
⎝

1 6 7
8 2 2
4 8 10

⎞
⎟
⎠
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Matrices Inverses

Chapter 5: Matrices

Using row reduction to find the inverse – 3 × 3 matrix

Find the inverse of A, where

A =
⎛
⎜
⎝

1 6 7
8 2 2
4 8 10

⎞
⎟
⎠

Augmenting the matrix, we have:

⎛
⎜
⎝

1 6 7 1 0 0
8 2 2 0 1 0
4 8 10 0 0 1

⎞
⎟
⎠
.
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Matrices Inverses

Chapter 5: Matrices

Using row reduction to find the inverse – 3 × 3 matrix

Find the inverse of A, where

A =
⎛
⎜
⎝

1 6 7
8 2 2
4 8 10

⎞
⎟
⎠

Again, we aim to have the left side become the identity matrix.
So performing elementary row operations, we get:

A−1 =
⎛
⎜
⎝

1 0 0 −1/9 1/9 1/18
0 1 0 2 1/2 −3/2
0 0 1 −14/9 −4/9 23/18

⎞
⎟
⎠
.

Gerald Huang, Yasin Khan MATH1131/1141 Revision



Matrices Inverses

Chapter 5: Matrices

Using row reduction to find the inverse – 3 × 3 matrix

Find the inverse of A, where

A =
⎛
⎜
⎝

1 6 7
8 2 2
4 8 10

⎞
⎟
⎠

So the inverse of A is given by the matrix:

⎛
⎜
⎝

−1/9 1/9 1/18
2 1/2 −3/2

−14/9 −4/9 23/18

⎞
⎟
⎠
.
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Matrices Inverses

Chapter 5: Matrices

Using row reduction to find the inverse – 3 × 3 matrix

Find the inverse of A, where

A =
⎛
⎜
⎝

1 6 7
8 2 2
4 8 10

⎞
⎟
⎠

So the inverse of A is given by the matrix:

⎛
⎜
⎝

−1/9 1/9 1/18
2 1/2 −3/2

−14/9 −4/9 23/18

⎞
⎟
⎠
.

ew!

Gerald Huang, Yasin Khan MATH1131/1141 Revision



Matrices Inverses

Chapter 5: Matrices

Inverse of a matrix - example

MATH1131 2018 Semester 1 Q3iv
Given that the invertible n × n matrix A satisfies

A2
= 2A + I,

express the inverse of A in terms of A and I.
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Matrices Inverses

Chapter 5: Matrices

Inverse of a matrix - example

MATH1131 2018 Semester 1 Q3iv
Given that the invertible n × n matrix A satisfies

A2
= 2A + I,

express the inverse of A in terms of A and I.

Multiplying both sides by the inverse of A on the right side, we
get:

A2A−1 = (2A + I)A−1

A = 2AA−1 +A−1

A − 2I = A−1

∴A−1 = A − 2I.
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Matrices Inverses

Chapter 5: Matrices

Inverse of a matrix - A final example

MATH1151 2016 Semester 1 Q3v
Prove that if an n × n matrix A is invertible and both A and A−1

have only integer entries then det(A) = ±1.
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Matrices Inverses

Chapter 5: Matrices

Inverse of a matrix - A final example

MATH1151 2016 Semester 1 Q3v
Prove that if an n × n matrix A is invertible and both A and A−1

have only integer entries then det(A) = ±1.

AA−1 = I Ô⇒ det (AA−1) = 1

Ô⇒ det(A)det (A−1) = 1

Ô⇒ det(A) =
1

det (A−1)
.

Now, since A and A−1 have only integer entries, then its
determinants are integers. Since det(A) is an integer, then
det (A−1) = ±1, which implies that det (A) = ±1.
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Good luck!!!

Best of luck with the exam! We hope that you found this
seminar valuable!

2016 - 2018 finals exam solutions ,
Click here!

Gerald Huang, Yasin Khan MATH1131/1141 Revision
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