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Proof vs intuition

Intuition:
1 A ”heuristic”.
2 Gives us a good idea whether a result is correct or not.
3 Prone to bias errors.
4 Improved overtime as we prove results.

Proofs:
1 Heavy rigour but provides a solid foundation for intuition.
2 Results proven can often be generalised.
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Quantifiers

Universal and existential quantifier
Symbol English equivalent LATEX code

Universal ∀ For all \forall
Existential ∃ There exists \exists
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Propositions, connectives and compound propositions

A proposition is a statement that may or may not be true. In
this topic, we will determine the absolute truth of this
statement.
A connective is a symbol that ”connects” two propositions
together.

∧ = and.
∨ = or.
¬ = ∼ = not.

Compound propositions consist of more than one
proposition.
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Implications and biconditionals (iff.)

An implication means that one statement can be inferred
indirectly from a previous statement. A statement q that can
be inferred from a statement p is written as

p =⇒ q.

If p =⇒ q AND q =⇒ p, then we can say that

p ⇐⇒ q

or p if and only if q.
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Truth tables

A truth table is a table of ”truth values” that allows us to
determine the truth about a proposition.

p q p ∨ q p ∧ q p =⇒ q

T T T T T
T F T F F
F T T F T
F F F F T

Question: What happens if the statement is:
always true?
always false?
sometimes true and sometimes false?
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Truth tables − tautologies
If the statement is always true, we call that a tautology. To prove
that a statement is a tautology, we show it through a truth table.

Example: (17S2, 3i)
Show, using truth tables, that (p → q)∨ (∼ p → r) is a tautology.

p q r p → q ∼ p → r (p → q) ∨ (∼ p → r)

T T T T T T
T T F T T T
T F T F T T
T F F F T T
F T T T T T
F T F T F T
F F T T T T
F F F T F T

Gerald Huang, Gorden Zhuang MATH1081 9 of 73



Part I: Proofs and logic Part II: Enumeration and probability

Truth tables − contradictions and contingencies

If the statement is always false, we call it a contradiction. To
prove that a statement is a contradiction, we show it through
a truth table.
If the statement depends on the propositions (sometimes true
and sometimes false), we call it a contingency. To prove that
a statement is a contingency, we show it through a truth table.
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Truth tables − logical equivalence

If two statements yield in the same outputs for all propositions, we
call them logically equivalent. We show this through a truth table
or standard logical equivalences.

The standard logical equivalences work in pretty much the same
way as set theory equivalences! A list of standard equivalences will
be posted in a separate document after the stream!

Example: (17S2, 3ii)
Show, using standard logical equivalences, (q∨ ∼ r)→ p is
logically equivalent to (r ∨ p) ∧ (q → p).
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Converse and contraposition

Converse of a statement − in logical statements
The converse of p ⇒ q is q ⇒ p.

Example of a converse
The converse of Since I own a cat, I own a pet is Since I own a
pet, I own a cat.

Contrapositive of a statement − in logical statements
The contraposition of p ⇒ q is ¬q ⇒ ¬p.

Example of a contraposition
The contraposition of Since I own a cat, I own a pet is Since I
don’t own a pet, I don’t own a cat.
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Negating logical symbols

Symbol Negation Statement Negation

∧ ∨ p ∧ q ¬p ∨ ¬q
∨ ∧ p ∨ q ¬p ∧ ¬q
¬ ¬p p
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Negating quantifiers

Negating ∀ statements
The negation of ∀ is ∃.

Negating ∃ statements
The negation of ∃ is ∀.

Example
Negate ∀x ∈ R, ∃y ∈ C.

1 The negation of ∀x ∈ R is ∃x ∈ R.
2 The negation of ∃y ∈ C is ∀y ∈ C.
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Negating quantifiers

Example: Negation of quantifiers (2018S2, Q3iv)
Let a1, a2, a3, . . . be a sequence of real numbers. The definition of
the limit of the sequence, lim

n→∞
an = `, is

∀ε > 0 ∃N ∈ N : ∀n ≥ N |an − `| < ε. (*)

a) Write in symbolic form the negation of (*), and simplify your
answer so that the negation symbol is not used.

∃ε > 0 ∀N ∈ N : ∃n ≥ N |an − `| ≥ ε.
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Negating statements

Negating an implication
Recall that an implication p ⇒ q is logically equivalent to ¬p ∨ q.
So the negation of p ⇒ q is

p ∧ ¬q.

Example: Negating an implication (2016S1, Q3iv)
A function f defined on the open interval D = (a, b) is called
uniformly continuous on D if and only if

∀ε > 0 ∃δ > 0 ∀x0 ∈ D ∀x ∈ D :
|x − x0| < δ → |f (x)− f (x0)| < ε.

Write down the negation of this definition, simplified so that it
does not contain the ”not” symbol.
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Rules of inference I

Modus arguments (rules of inference)
Modus ponens

if P ⇒ Q and P, then Q.
Example: If today is Tuesday, then I will go to work. Today is
Tuesday. Therefore, I will go to work.

Modus tollens
if P ⇒ Q and ¬Q, then ¬P.
Example: If today is Tuesday, then I will go to work. I’m not
going to work. Therefore, today is not Tuesday.
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Rules of inference II

Syllogism arguments (rules of inference)
Hypothetical syllogism

if P ⇒ Q and Q ⇒ R, then P ⇒ R.
Example: If I do not wake up, then I will not go to work. If I
do not go to work, I will not get paid. Therefore, if I do not
wake up, I will not get paid.

Disjunctive syllogism
if P ∨ Q and ¬P, then Q.
Example: I either study maths or computer science and I do
not study maths. Therefore, I study computer science.
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Rules of inference III

To prove that an argument is valid, we use a truth table.
Reject any row that denies the hypotheses.
Determine if the rest of the rows is true or not.

Example: (19T2, Q3ii)
Consider the following argument. ”If I buy a new car then I will
have to give up eating out and seeing movies. If I have to give up
eating out then I won’t give up seeing movies. Therefore, I won’t
buy a new car.”
Show that the argument is logically valid.
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Rules of inference III

Define p = buy a new car, q = give up eating and
r = give up seeing movies.
Construct the hypotheses and conclusion.

Hypotheses:

p =⇒ q ∧ r .
q =⇒ ∼ r .

Conclusion:
∼ p.
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Rules of inference III

Construct the truth table.

p q r p → q ∧ r q →∼ r ∼ p

T T T T F ∗
T T F F ∗ ∗
T F T F ∗ ∗
T F F F ∗ ∗
F T T T F ∗
F T F T T T
F F T T T T
F F F T T T
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Proof writing

Tips for writing a good proof
1 State all of the assumptions you are making within the proof.

Suppose that x is odd...
Suppose that y is prime...

2 State all of the axioms and/or theorems that you will use
throughout the proof.

By De Moivre’s theorem,
(cos θ + i sin θ)n = cos(nθ) + i sin(nθ).

3 Write in concise and full sentences.
Avoid using logical statements inline with text: Then it follows
that ∀ε > 0, ∃δ > 0 such that ...
Instead, consider writing in prose: Then it follows that, for all
ε > 0, there exists a δ > 0 such that...
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Proof I: Direct proofs I

Process of proof
1 Begin with the hypothesis (if given).
2 Use some logical and deductive reasoning to reach the

conclusion.

Example: Direct proofs
Prove that, if n is odd, then n2 is also odd.
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Proof II: Mathematical induction

Process of proof
1 Show that the statement holds for the base case.
2 (Inductive hypothesis) Assume that the statement holds for

some integer (n = k).
3 Show that the statement holds for the next case along

(n = k + 1).
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Proof II: Mathematical induction

Process of proof
1 Show that the statement holds for the base case.
2 (Inductive hypothesis) Assume that the statement holds for

some integer (n = k).
3 Show that the statement holds for the next case along

(n = k + 1).

Example: (16S2, Q3ii)
Prove that
xn+1 − yn+1 = (x + y)(xn − yn)− xy(xn−1 − yn−1).
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Proof II: Mathematical induction

Process of proof
1 Show that the statement holds for the base case.
2 (Inductive hypothesis) Assume that the statement holds for

some integer (n = k).
3 Show that the statement holds for the next case along

(n = k + 1).

Example: (16S2, Q3ii)

Let α = 1 +
√

5 and β = 1−
√

5. Use mathematical induction
to prove that

Fn = αn − βn

2n
√

5
is an integer for n = 1, 2, 3, . . ..
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Proof II: Mathematical induction

Process of proof
1 Show that the statement holds for the base case.
2 (Inductive hypothesis) Assume that the statement holds for

some integer (n = k).
3 Show that the statement holds for the next case along

(n = k + 1).

Example: (Tutorial Q53)
Prove that for all n ∈ Z+,

21 | 4n+1 + 52n−1.
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Proof II: Mathematical induction

Process of proof
1 Show that the statement holds for the base case.
2 (Inductive hypothesis) Assume that the statement holds for

some integer (n = k).
3 Show that the statement holds for the next case along

(n = k + 1).

Example: (18S2, Q3iii)
Prove by mathematical induction that for all integers n ≥ 2,

1 + 1
4 + 1

9 + · · ·+ 1
n2 < 2− 1

n .
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Proof III: Proof by contradiction

Process of proof
1 Assume that a statement is true.
2 Use mathematical deduction to arrive at a contradiction.
3 Conclude that the original statement must have been false.

Example: (17S2, Q3iii)

Prove that
√

13 is irrational.
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Proof IV: Proof by contraposition

Process of proof
1 Rewrite the original statement into its contrapositive

p =⇒ q ⇐⇒ ¬q =⇒ ¬p.

2 Prove the contraposition.
3 Since the original statement is equivalent to its

contraposition, then the original statement must also be true.
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Proof V: Proof by pigeonhole principle I

(16S1) Suppose that 26 integers are chosen from the set
S = {1, 2, . . . , 50}. By writing these numbers as 2km with m
odd, prove that one of the chosen numbers is a multiple of
another of the chosen numbers.
(17S1) Prove that given any 7 points on a circle of radius 1,
there exist at least two that are less than 1 unit away from
each other.
(19T1) Let b1, b2, . . . , b14 be integers, with repetitions
allowed. Define

S = {(i , j) ∈ Z2 | 1 ≤ i , j ≤ 14, i < j}.

Prove that, for some r ∈ {0, 1, . . . , 44}, there exist at least
three pairs (i , j) ∈ S such that

bi + bj ≡ r (mod 45).
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Proof V: Proof by pigeonhole principle II

Process of proof
1 Reframe the question so you have pigeons and pigeonholes.
2 Use the pigeonhole principle to then finish the proof.
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Proof VI: Mix of proofs

Often, you will need to use ideas taught in separate topics.

(18S2) For all integers n, prove that 9 does not divide n2 − 3.
(16S1) If p and q are distinct primes, then √pq is irrational.
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Summary of proofs

Direct proofs:
Key words: N/A

Mathematical induction:
Key words: For all integers...

Proof by contradiction:
Key words: Irrational, does not

Proof by contraposition:
If the contraposition is easier to prove, use proof by
contraposition.

Proof by pigeonhole principle:
Key words: there exist at least X...
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Part II: Enumeration and probability
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Discrete Probability

Discrete Probability
Discrete probability describes probabilities of outcomes
where both the number of favourable outcomes and total
outcomes are ”countable”.

Pr(Event) = Number of favourable outcomes
Number of possible outcomes

We use various counting techniques to evaluate these
probabilities.

Example: Discrete Probability
What is the probability of randomly picking a red marble out of a
bag containing four red and six blue marbles?
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Unconditional Counting I

Ordered Selections- No Repetition
How many ways are there to choose r objects, in order, out of
n ”unique” objects, without replacement?
Each of these selections is called a permutation. The total
number of permutations is given by

P(n, r) = n!
(n − r)!

Where r = n, the number of ways is given by the factorial of
n:

n! = n × (n − 1)× ...× 2× 1
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Unconditional Counting II

Unordered Selections- No Repetition
How many ways are there to choose r objects, regardless of
order, out of n ”unique objects”, without replacement?
Each unordered selection is called a combination. The total
number of combinations is given by

C(n, r) =
(

n
r

)
= n!

r !(n − r)!
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Unconditional Counting III

Ordered Selections- Repetition Allowed
How many ways are there to choose r objects, in order, out
ofn ”unique objects”, with replacement?
Since there are r independent spaces for n objects each, the
number of choices is given by

n × n × ...× n (r times) = nr
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Unconditional Counting IV

Unordered Selections- Repetition Allowed
How many ways are there to choose r objects, in any order,
out of n ”unique objects”, with replacement?
The total number of ways is given by(

n + r − 1
n − 1

)

Think of it as distributing r selections among n categories,
using the ”stars and bars” method.

Gerald Huang, Gorden Zhuang MATH1081 36 of 73



Part I: Proofs and logic Part II: Enumeration and probability

Unconditional Counting V

Remember
Check if there is replacement or not.
Check if order is relevant.
Check if the question asks for a probability.

A Useful Table

Repetitions

allowed not allowed

Order
relevant nr P(n, r)

irrelevant
(n+r−1

n−1
) (n

r
)
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Example I

Term 2 2019, Q2 (iii)
A poker hand consists of five cards dealt from a standard pack. A
poker hand is called ”four of a kind” if it contains four cards of the
same value and one other card. You and one other player are each
dealt a poker hand from the same pack. (So, ten cards are dealt
altogether.)

a) What is the probability that your hand is ”four of a kind”?
b) You pick up your hand and see that you have ”four of a kind”.

What is the probability that the other player also has ”four of
a kind” ?

Remember

Probability = Number of favourable outcomes
Number of possible outcomes
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Example I

a) Solution:
Total number of hands: C(52, 5)
Number of ways to choose four cards of the same value:

C(13, 1) = 13

Number of ways to get ”four of a kind”:

13× (52− 4) = 13× 48

Probability:
13× 48
C(52, 5) = 1

4165
An alternative solution:

52× 12
C(52, 5)
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Example I

b Solution:
Total number of possible hands: C(52− 5, 5) = C(47, 5)
Number of ways to choose four cards of the same value:

C(11, 1) = 11

Number of ways to get ”four of a kind”:

11× (52− 5− 4) = 11× 43

Probability:
11× 43
C(47, 5) = 1

3243
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Example II

Term 1 2019, Q2 (i)
The English alphabet has 26 letters, of which 5 are vowels and 21
are consonants. We will write all our words using upper case
(capital) letters. Repetition of letters in words is allowed. Find the
number of 12 letter words (strings) using the English alphabet:

a) with no further restrictions;
b) containing exactly 4 vowels and no repeated consonants;
c) containing the subword ”WATER” at least once (e.g.,

”ZWATERZWATER” but not ”ZWAZTERZZZZZ”).

a) Solution:
2612
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Example II

b) Solution:
Choose the places for the vowels: C(12, 4)
Select the vowels (ordered, repetition allowed):

54

Select the consonants (ordered, no repetition):

P(21, 8)

Total words:
C(12, 4)× 54 × P(21, 8)
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Multiplication/Addition Rule I

Multiplication Rule
Two events are independent if the occurrence of one does
not affect the probability of the other.

A and B are independent ⇐⇒ Pr(A and B) = Pr(A)×Pr(B)

This is the multiplication rule and can only be applied to
independent events.
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Multiplication/Addition Rule II

Addition Rule
Two items are mutually exclusive if they cannot both occur.
i.e.

Pr(A and B) = 0

The addition rule can always be applied where appropriate
and is given by

Pr(A or B) = Pr(A) + Pr(B)− Pr(A and B)
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More Complex Counting I

Grouped Objects
When arranging objects, some objects may be required to stay
together. To account for this, we count each of these groups
as a single unit.
Within each group, the objects may arranged in any order.
We account for this by multiplying the total by the number of
ways they can be rearranged.
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Example III

Semester 2 2018, Q4 i)
How many different ways can 4 pairs of twins and 3 sets of triplets
all from separate families be arranged in a line, if the siblings
should stand together? (All 17 people can be distinguished from
each other by their clothing.)

Solution:
Ways to arrange the line: 7!
Ways to arrange each of four pairs: 2!
Ways to arrange each of three sets of triplets: 3!
Multiplying them together gives a total of:

7!× 2!× 2!× 2!× 2!× 3!× 3!× 3! = 7!(2!)4(3!)3
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More Complex Counting II

Inclusion-Exclusion Principle
The inclusion-exclusion principle revolves around the
formula for counting elements in a union of sets.
For a union of three sets, the total number of elements would
be

|A1 ∪ A2 ∪ A3| =|A1|+ |A2|+ |A3|
− |A1 ∩ A2| − |A1 ∩ A3| − |A2 ∩ A3|
+ |A1 ∩ A2 ∩ A3|
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Example II Part c

Term 1 2019, Q2 (i) c)
Find the number of 12 letter words (strings) using the English
alphabet containing the subword ”WATER” at least once
(e.g.,”ZWATERZWATER” but not ”ZWAZTERZZZZZ”).

c Solution:
Containing at least 1 ”WATER” (includes double counting)
Choose the position of the ”WATER”:

C(8, 1) = 8

Select the other letters (ordered, repetition allowed):

267

Total ways = 8× 267
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Example II Part c

c) Solution Continued:
Containing 2 ”WATER”s
Choose the position of the ”WATER”s: C(4, 2) = 6
Select the other letters:

262

Total ways = 6× 262

Number of words:

8× 267 − 6× 262
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Example IV

Semester 2 2018, Q4 iii)
How many 13-card hands can be dealt from a standard deck of 52
cards such that

a) all cards are of the same colour?
b) there are exactly four cards in at least one suit?

a) Solution:

2× C(26, 13)

Alternatively,
52× C(25, 12)

13
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Example IV
b) Solution:

Exactly four cards in at least one suit (includes double counting)

C(4, 1)× C(13, 4)× C(39, 9)

Exactly four cards in at least two suits (includes double counting)

C(4, 2)× (C(13, 4))2 × C(26, 5)

Exactly four cards in three suits

C(4, 3)× (C(13, 4))3 × C(13, 1)

Number of ways:

C(4, 1)× C(13, 4)× C(39, 9)
− C(4, 2)× (C(13, 4))2 × C(26, 5)
+ C(4, 3)× (C(13, 4))3 × C(13, 1)
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More Complex Counting III

Repeated Objects
The selection of objects to arrange may contain repetitions.
Selecting any repeated item counts as the same selection, so
the result is a lower number of arrangements.
To eliminate the ”double counting” of arranging repeated
objects, divide the number of arrangements by the factorial of
the number of each repetition. i.e.

n!
nA!nB!nC !...

When selecting from a bag containing repetitions, the
inclusion-exclusion principle will be required.
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More Complex Counting IV

Stars and Bars
How many ways are there to sort n objects into r baskets?
We use n stars (*) to represent the n objects and r-1 bars (|)
to represent dividers between baskets. e.g.

|***|**

The number of ways to do this is given by:

C(n + r − 1, r − 1) =
(

n + r − 1
r − 1

)
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Example V

Term 2 2019, Q2 (iii)
Consider the equation

x1 + x2 + x3 + x4 + x5 = 100

where x1, x2, x3, x4, x5 are to be non-negative integers.
a) How many solutions has this equation altogether?
b) How many solutions has this equation in which all

x1, x2, x3, x4, x5 are all congruent to 2 modulo 3?
c) How many solutions has this equation in which none of

x1, x2, x3, x4, x5 is congruent to 2 modulo 3?
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Example V

a) Solution:
There are 100 units to be divided into 5 distinct groups
(x1...). Thus the solution is

C(104, 4)

b) Solution:

x ≡ 2 (mod 3) ⇐⇒ x = 3n + 2 for some integer n

Then we have,

3n1 + 3n2 + 3n3 + 3n4 + 3n5 + 10 = 3× 30 + 10

n1 + n2 + n3 + n4 + n5 = 30
The number of solutions is then:

C(34, 4)
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Example V

c) Solution:

x1 + x2 + x3 + x4 + x5 ≡ 100 ≡ 1 (mod 3)

Each term has two possibilities:

xi ≡ 0 (mod 3), xi ≡ 1 (mod 3)

Case 1: (four terms ≡ 0)
Ways to choose the four terms: C(5, 4) = 5

3n1 + 3n2 + 3n3 + 3n4 + 3n5 + 1 = 3× 33 + 1

n1 + n2 + n3 + n4 + n5 = 33

Number of ways: 5× C(37, 4)
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Example V

c) Solution Continued:
Case 2: (one term ≡ 0)
Ways to choose one term: C(5, 1) = 5

3n1 + 3n2 + 3n3 + 3n4 + 3n5 + 4 = 3× 32 + 4

n1 + n2 + n3 + n4 + n5 = 32

Number of ways: 5× C(36, 4)
Total

5× C(37, 4) + 5× C(36, 4)
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More Complex Counting V

Binomials and Multinomials
The coefficients of a binomial expansion under a non-negative
integer power can be determined in the following way:

(x + y)n =
n∑

r=0
C(n, r)x r yn−r

A multinomial is similar to a binomial, except that it can
have more than two terms inside the brackets.
To determine the coefficient of a term in its expanded form,
think of it as selecting from each of the n brackets.

(x + y + z)n = (x + y + z)× (x + y + z)× ...× (x + y + z)

n!
nx !ny !nz !xnx yny znz
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Example VI

Semester 2 2017, Q4 i)
Compute the coefficient of the monomial x3

1 x2
2 x3x4 in the

polynomial (x1 + x2 + x3 + x4)7 .

Solution:

7!
3!× 2!× 1!× 1! = 420
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More Complex Counting VI

Counting in a Circle
Sometimes, a counting question would ask to arrange certain
objects in a circle. To answer this type of question, divide the
total number of arrangements by the number of ”positions” in
the circle.
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More Complex Counting VII

Pigeonhole Principle
The pigeonhole principle is a principle which uses counting
techniques. The idea is that if n boxes contain more than n
objects, then at least one box contains more than one object.
Questions involving the use of the pigeonhole principle will
often be in the form ”what is the minimum number of people
required such that there is at least r belonging to the same
category?”
The approach is to find the maximum number of people such
that the condition is not met, and then add an extra person.
If there are n categories, then the solution would be:

n × (r − 1) + 1
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Example VII

Semester 2 2016, Q4 v)
Suppose that 5 points are chosen in the plane. Each point has
integer coordinates. Prove that the midpoint of the line segment
joining at least two such points, also has integer coordinates.

(xm, ym) = (x1 + x2
2 ,

y1 + y2
2 )

We know that odd + odd = even and even + even = even.
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Example VII

Solution
Each point has two coordinates (x, y) and each coordinate can
either be even or odd. That gives four possible categories:

(even, even), (even, odd), (odd, even), (odd, odd)

With five such points, by the pigeonhole principle, there must be
at least two points under the same category. From the information
above, the midpoint between these two points will have integer
coordinates.
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Recurrence Relations I

Introduction
A recurrence relation is a relation where a term in a
sequence is defined based on previous terms. e.g.

Fn = Fn−1 + Fn−2

The relation also often comes with initial conditions.
The goal is to be able to come up with an equation between
each term and n.
The methods to solving these involves a combination of
guesswork and recognition.
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Example VIII

Semester 2 2018, Q4 v)
A straight path of width 2 units is to be laid using the 1-unit by
2-unit paving slabs. [Such slabs can be laid side-by-side
horizontally or vertically]
Let an be the number of ways to lay a path of width 2 units and
length n units.

a) Find a1, a2 and a3.
b) Obtain a recurrence relation for an. Explain your answer.

(You do NOT need to solve this recurrence relation.)
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Example VIII

a) Solution: Let | represent a vertical slab (1X2), = represent
two horizontal slabs (2x2).

a1 = 1

|
a2 = 2

| | or =
a3 = 3

| | | or |= or =|
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Example VIII

b) Solution:
The last block is either a vertical slab (|) or a horizontal slab
(=). Thus, the recurrence relation should be of degree 2.

There is one direct way to build a path of length n from a
path of length n-2 (... =) and one way from a length of n-1
(... |). The recurrence relation is given by:

an = an−1 + an−2
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Recurrence Relations II

Solving Second Order Linear Recurrence Relations
Start by rewriting all the terms containing an on one side and
all other terms on the other:

an + pan−1 + qan−2 = f (n)

Start by solving the homogeneous case. To do this, we
”guess” that the solution will take the form an = λn

Substituting this into the homogeneous equation gives:

λn + pλn−1 + qλn−2 = 0

Factoring out λn−2 (and the solution λ = 0) gives the
characteristic equation:

λ2 + pλ+ q = 0
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Recurrence Relations II

Solving Second Order Linear Recurrence Relations
Where α and β are the solutions to the characteristic
equation, the general solution to the recurrence relation will
be:

an = Aαn + Bβn (2 distinct, real roots)

an = Aαn + Bnαn (double root)

an = λn(C cos nθ + D sin nθ) (2 non-real roots)

Substitute the initial values to find A and B
if the problem is about a homogeneous recurrence.
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Recurrence Relations III

Solving the Inhomogeneous Case

an + pan−1 + qan−2 = f (n)

Once we have found the general solution to the homogeneous
case, we then look for a particular solution. The solution to
the inhomogeneous recurrence is then given by:

an = hn + pn

The particular solution should have a similar form to the
function on the right side of the equation.
If the guess for the particular solution is part of the
homogeneous solution, add an n in front.
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Example IX

Semester 2 2018, Q4 iv)
a) Find the general solution of the recurrence

an + 4an−1 − 12an−2 = 0

subject to the conditions a0 = 3 and a1 = 2
b) Find the particular solution of the recurrence

an + 4an−1 − 12an−2 = 2n

a) Solution:
Substitute an = λn

λn + 4λn−1 − 12λn−2 = 0

λ2 + 4λ− 12 = 0
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Example IX

a) Solution Continued:

an = A(−6)n + B(2)n

Substitute initial values:

A(−6)0 + B(2)0 = 3 (1)

A(−6)1 + B(2)1 = 2 (2)

A = 1
2 B = 5

2
General (homogeneous) solution:

an = 1
2(−6)n + 5

2(2)n
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Example IX

b Solution:
Substitute an = Cn2n

Cn2n + 4C(n − 1)(2)n−1 − 12C(n − 2)(2)n−2 = 2n

(Cn + 4C(n − 1)
2 − 12C(n − 2)

22 )2n = 2n

Cn + 2Cn − 2C − 3Cn + 6C = 1

C = 1
8

Particular solution:
an = 1

8n2n
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