MATH3051: Applied Real and Functional Analysis

Lecture Notes by Gerald Huang

2023, Term 3

Contents

1	Sets	and Functions	3
	1.1	Revision of Set Theory	3
	1.2	Revision of Functions	3
	1.3	Revision of Equivalence and Ordered Sets	3
	1.4	Countability	3
2	Met	ric Spaces	4
	2.1	Convergence in Metric Spaces	5
		2.1.1 Cauchy sequences	6
	2.2	Continuity in Metric Spaces	7
	2.3	Completeness	7
		2.3.1 Baire's Theorem	7
	2.4	Contraction Mappings	8
	2.5	Applications	8
		2.5.1 Existence and Uniqueness of solutions of ODEs	8
		2.5.2 Picard-Lindelöf Theorem	8
		2.5.3 Systems of Linear Equations	8
		2.5.4 Fredholm Integral Equation	8
3	Тор	ological Spaces	9
	3.1	Axioms of Separation	9
		3.1.1 T_1 -space	9
		3.1.2 T_2 -space – Hausdorff property	10
	3.2	Bases and Axioms of Countability	10
	3.3	Convergence in Topological Spaces	10
	3.4	Compactness	10

		3.4.1 Compactness in Metric Spaces	10
	3.5	Continuity in Topological Spaces	10
	3.6	The Space $C(X)$	10
	3.7	Connectedness	10
	3.8	The weak topology	10
4	Mea	asure Theory and Lebesgue Integrals	11
5	Nor	med Vector Spaces	12
6	Diff	ferential Calculus in Normed Spaces	13

Sets and Functions

- 1.1 Revision of Set Theory
- **1.2 Revision of Functions**
- **1.3** Revision of Equivalence and Ordered Sets
- 1.4 Countability

Metric Spaces

Our first object of study come from sets endowed with a notion of a *distance*. The ordinary distance function over the real numbers is the absolute difference; that is, over the real numbers, we can define the distance of x and y by the magnitude of its difference: d(x, y) = |x - y|. What we would like to do is to extract some of the useful properties from this distance function and generate a more general description of distance. What properties do we want in a distance function?

The first property that we would want is that the distance is non-negative; it doesn't *really* make sense to refer to negative distance. Therefore, one property that we would want is that, for any pair of points x, y in your set, $d(x, y) \ge 0$. What about the distance from x to itself? Define d(x, x) = 0 for each x.

The second property is that distances are symmetric; it takes the same distance if we started at x to y as it would if we started at y instead. Therefore, it would be nice if d(x, y) = d(y, x). Finally, distances should satisfy the triangle inequality; that is, $d(x, y) \le d(x, z) + d(z, y)$. In fact, this is enough to define a distance function, thereafter referred to as a *metric*.

Definition. Let *X* be a non-empty set. A *metric* on *X* is a function $d : X \times X \to \mathbb{R}$ satisfying the following properties for any $x, y, z \in X$.

- [1] **Positive definiteness:** $d(x, y) \ge 0$ with d(x, y) = 0 if and only if x = y.
- [2] **Symmetric**: d(x, y) = d(y, x).
- [3] Triangle inequality: $d(x, y) \le d(x, z) + d(z, y)$.

The pair (X, d) is called a *metric space*. These properties are clear for the metric d(x, y) = |x - y| over the set $X = \mathbb{R}$. It is more interesting to explore more exotic examples of metric spaces.

Consider the set C([a, b]) of continuous functions on the closed interval [a, b], and let $d_1(f, g) = \max_{a \le t \le b} |f(t) - g(t)|$. It is not hard to see that $(C([a, b]), d_1)$ forms a metric space. The first two properties of the metric are obvious. It suffices to check the triangle inequality. We see that

$$d_{1}(f,g) = \max_{a \le t \le b} |f(t) - g(t)|$$

= $\max_{a \le t \le b} |f(t) - h(t) + h(t) - g(t)|$
 $\le \max_{a \le t \le b} (|f(t) - h(t)| + |h(t) - g(t)|)$
 $\le \max_{a \le t \le b} |f(t) - h(t)| + \max_{a \le t \le b} |h(t) - g(t)|$
= $d_{1}(f,h) + d_{1}(h,g),$

as required. Therefore, $(C([a, b]), d_1)$ forms a metric space.

2.1 Convergence in Metric Spaces

In previous calculus classes, we introduced the notion of *convergence* by looking at the limiting behaviour of a function. For example, f(x) = 1/x converges to 0 as $x \to \infty$. More generally, the distance between f(x) and 0 shrinks to zero as we take $x \to \infty$. This gives us the natural definition of *convergence* on a metric space.

Definition. A sequence $\{x_n\}_{n\in\mathbb{N}}$ in a metric space (X, d) is said to *converge* to $x \in X$ if for all $\epsilon > 0$, there exists N > 0 such that,

$$n > N \implies d(x_n, x) < \epsilon.$$

Therefore, a sequence $\{x_n\}$ may converge to x in a metric space (X, d_1) but not converge to x in another metric space (X, d_2) , even when the underlying space is the same. As usual, there is a local notion of convergence – if X = C([a, b]), then $f_n(t) \to f$ as $n \to \infty$ for each $t \in [a, b]$. On the other hand, *uniform* convergence does not require us to fix each t; that is, for all $t \in [a, b]$, $f_n(t) \to f$.

2.1.1 Cauchy sequences

It is not hard to see that Cauchy sequences do not necessarily converge. Our goal is to find a requirement for convergence to be ensured in a Cauchy sequence. This will lead naturally to the concept of *completeness* which we explore further in Section 2.3.

Let $\{a_n\}$ be a Cauchy sequence in a metric space (X, d). It turns out that it is enough for a *subsequence* of $\{a_n\}$ to be convergent to ensure that $\{a_n\}$ also converges (not necessarily to a point in X).

Theorem. Let $\{a_n\}$ be a Cauchy sequence in a metric space X. If $\{a_n\}$ has a convergent subsequence, then $\{a_n\}$ also converges to the same limit.

Proof. Denote the subsequence by $\{a_{n_k}\}$ and suppose that $\{a_{n_k}\}$ converges to a. Our goal is to show that $\{a_n\}$ also converges to a. Since $\{a_n\}$ is Cauchy, then for each $\epsilon > 0$, there exists an N such that for all $n, m \ge N$, we have that

$$d(a_n, a_m) < \frac{\epsilon}{2}.$$

Since $\{a_{n_k}\}$ converges to a, then for each $\epsilon > 0$, there exists an N' such that for all $n_k \ge N'$, we have that

$$d(a_{n_k}, a) < \frac{\epsilon}{2}.$$

We now consider $d(a_n, a)$. Choose $M = \max\{N, N'\}$ so that both inequalities hold simultaneously. Then, for all $n \ge M$ and by the triangle inequality,

$$d(a_n, a) \le d(a_n, a_{n_k}) + d(a_{n_k}, a)$$
$$< \frac{\epsilon}{2} + \frac{\epsilon}{2}$$
$$= \epsilon.$$

Therefore, $\{a_n\} \to a$ which finishes the proof.

In fact, the converse is also true and so, we have the following proposition.

Proposition. A Cauchy sequence converges in a metric space if and only if it has a convergent subsequence.

2.2 Continuity in Metric Spaces

2.3 Completeness

In the previous sections, we talked about sequences of points converging in a metric space. In particular, every convergence sequence is *Cauchy*. However, not all Cauchy sequences converge. The completeness property of metric spaces rectifies this.

Definition (Completeness). A metric space *X* is *complete* if every Cauchy sequence converges to some element in *X*.

For example, the metric space $(\mathbb{Q}, |\cdot|)$ is *not* complete. Consider any irrational number x and consider the sequence given by the truncations of x. The sequence is Cauchy but does not converge to any element in \mathbb{Q} because the sequence converges to x which is clearly not in \mathbb{Q} .

Theorem. A closed subspace of a complete metric space is complete.

Proof. Let *X* be a complete metric space, and let *Y* be a closed subspace of *X*. We now show that *Y* is complete. To do this, consider any Cauchy sequence $\{x_n\}$ in *Y*. We need to show that such a sequence converges to a point in *Y*. Clearly, $\{x_n\}$ is Cauchy in *X*. Since *X* is complete, $\{x_n\}$ converges to a point *x* in *X*. But *Y* is closed in *X*; therefore, *Y* must contain all of its limit points which implies that $x \in Y$ since $\{x_n\} \subseteq Y$. Therefore, $\{x_n\}$ converges to a point in *Y* which finishes the proof.

2.3.1 Baire's Theorem

One reason why completeness is such a fundamental result is due to *Baire's theorem*. Loosely speaking, Baire's theorem says that if we begin with a complete metric space, then the intersection of every countable collection of dense open sets of X is dense in X. We can also think about this in the context of closed sets too. Given a collection of

2.4 Contraction Mappings

2.5 Applications

- 2.5.1 Existence and Uniqueness of solutions of ODEs
- 2.5.2 Picard-Lindelöf Theorem
- 2.5.3 Systems of Linear Equations
- 2.5.4 Fredholm Integral Equation

Topological Spaces

In the previous chapter, we explored the concept of *metric spaces*. These were familiar objects to study but they aren't quite versatile. The metric object isn't quite general and so, some notions of convergence aren't well-defined on some set structures. When a set *X* does not have a metric equipped, we need to look for something stronger. It turns out that all we need is a notion of an *open set*.

In fact, metrics induce a very natural open set. Consider the metric defined by d(x, y) = |x - y|. One way to define an open set using *d* is to consider the collection of points *y* that is contained inside

3.1 Axioms of Separation

The axioms of separation impose further restrictions on a topological space (X, τ) to provide information about whether there are *enough* open sets to *separate* distinct points (subsets). The first natural restriction is the *existence* of an open set U that contains x but not y. Topological spaces that satisfy this property are often called T_0 -spaces or *Kolmogorov spaces*. This is the weakest separation axiom but the simplest restriction to ensure that all points in a T_0 -space are topologically distinguishable.

3.1.1 *T*₁-space

We can make this restriction stronger. Instead of requiring one open set that contains one point but not another, we might require a pair of open sets $U_x, V_y \in \tau$ such that $x \in U_x, y \notin U_x$ and $x \notin V_y, y \in V_y$ for all pairs of points $x, y \in X$. It is easy to see that all spaces that are T_1 must necessarily be T_0 -spaces. These spaces are called *Fréchet spaces*.

3.1.2 *T*₂-space – Hausdorff property

We now come to an even stronger restriction. For T_1 -spaces, the pair of open sets may overlap. The second axiom of separation requires the open sets to be disjoint; that is, for each pair of points $x, y \in X$, we have that

$$x \in U_x, \ y \in V_y, \ U_x \cap V_y = \emptyset.$$

These are called *Hausdorff spaces*.

3.2 Bases and Axioms of Countability

3.3 Convergence in Topological Spaces

3.4 Compactness

- 3.4.1 Compactness in Metric Spaces
- 3.5 Continuity in Topological Spaces
- **3.6** The Space C(X)

3.7 Connectedness

3.8 The weak topology

Measure Theory and Lebesgue Integrals

Normed Vector Spaces

Differential Calculus in Normed

Spaces