
CHAPTER 8. RANDOMISED ALGORITHMS

8.7 Derandomisation

God does not play dice with the universe.

Albert Einstein

Throughout this chapter, we introduced the power of adding randomisation into an algorithm. In this
section, we examine a connection between randomised and deterministic algorithms. In particular,
we examine how to arrive at deterministic algorithms from a randomised algorithm. This concept is
called derandomisation. Why is this type of question even useful?

As it turns out, the concept of randomisation has a few practical and philosophical difficulties; one
philosophical difficulty that arises can be best described with Einstein’s quote in the epigraph: do
truly random events even exist in the first place? Of course, there are occurrences that seem random
but we can often describe these occurrences using some expression – however unwieldy they may be.
Consider a random number generator, for example. Their outcomes may seem to follow no specific
patterns. However, the underlying mechanism of these generators follow a kind of algorithm that
mimic the behaviour of randomness. In a sense, they are not truly random since the outcomes can be
predicted accurately by examining the behaviour of the algorithm.

To best demonstrate the concept of derandomisation, we will explore this idea with an example.
Consider the following problem.

Problem (Polynomial testing). Given two polynomials Q(x1, . . . , xn) and R(x1, . . . , xn) over n vari-
ables with coefficients in some field F, decide whether Q ≡ R; that is, decide whether the two poly-
nomials are equivalent.

For example, if Q(x1, x2) = (1 + x1)(1 − x2) and R(x1, x2) = 1 + x1 − x2 − x1x2, then the algorithm
should return YES. On the other hand, if Q(x1, x2) = (1+x1)(1−x2) and R(x1, x2) = 1+x1+x2+x1x2,
then the algorithm should return NO. Note that we can transform this problem into a simpler problem
of determining whether a given polynomial is identically the zero polynomial by letting P ≡ Q − R.
The problem is then equivalent to deciding whether P ≡ 0. For the rest of the example, we will just
consider the problem of determining whether a polynomial is identically the zero polynomial stated
below.

Problem (Polynomial identity testing). Given a polynomial P (x1, . . . , xn) over n variables with coef-
ficients in some field F, decide whether P ≡ 0; that is, decide whether the polynomial is equivalent to
the zero polynomial.

A very easy way to approach the problem is to expand out P so that it is simply a sum of monomials;
for example, we can expand P (x1, x2) = (1 + x1)(1 − x2) − 1 − x1 + x2 + x1x2 into Q(x1, x2) =

1 + x1 − x2 − x1x2 − 1 − x1 + x2 + x1x2 = 0. However, this has exponential-time complexity at worst
case. A circuit representing the polynomial P (x1, . . . , xn) = ∏n

i=1(1+xi) has length O(n) but expands
into O(2n) monomials.

Luckily, there is a simple and elegant probabilistic algorithm that tests for membership. The key
insight is that, while naively expanding out all of the terms gives rise to an exponential-time com-
putation, we can evaluate polynomials more efficiently at any given point (a1, . . . , an). This leads
naturally to the Schwartz-Zippel Lemma.

8.7.1 Schwartz-Zippel Lemma

To motivate the lemma, we first observe that, if a polynomial P (x1, . . . , xn) is identically the zero
polynomial, then testing P on any point (a1, . . . , an) should give P (a1, . . . , an) = 0. There are two
cases that may occur.

1. If P (a1, . . . , an) ≠ 0, then clearly P cannot be the zero polynomial. So certainly, we should
return NO.

24 An Invitation to Algorithm Design and Analysis



CHAPTER 8. RANDOMISED ALGORITHMS

2. If P (a1, . . . , an) = 0, then either: P is identical to the zero polynomial, or (a1, . . . an) just so
happens to be a root of the polynomial and P is not identical to the zero polynomial.

Our goal is to find a suitable bound on the probability that evaluating P on an arbitrary point
(a1, . . . , an) is equal to zero. This is the Schwartz-Zippel Lemma.

Lemma (Schwartz-Zippel Lemma). Let P (x1, . . . , xn) be a non-zero polynomial with degree d, and
let S denote a finite set of elements. If a1, . . . , an is chosen independently and uniformly at random
from S, then

P [P (a1, . . . , an) = 0] ≤ d

∣S∣ .

In other words, the probability that (a1, . . . , an) just so happens to be a root of P with P /≡ 0 is
bounded by at most d/∣S∣.

Proof. We prove the lemma by induction on n.

• When n = 1, we arrive at the univariate polynomial case. A polynomial P (x) of degree d has at
most d distinct roots over S; therefore, the probability that a1 is a root of P is at most d/∣S∣.

• Suppose that the statement is true for polynomials over n−1 variables. Note that we can express
P as a polynomial over the variables x2, . . . , xn as follows:

P (x1, . . . , xn) =
d

∑
i=0

x
i
1Pi(x2, . . . , xn),

where Pi is a polynomial over n − 1 variables of degree d − i. Now, since P is a non-zero
polynomial, at least one such Pi is non-zero. Let i be the largest index such that Pi is non-zero.
We now arbitrarily pick some a2, . . . , an from S. By our inductive hypothesis, we have that

P [Pi(a2, . . . , an) = 0] ≤ d − i

∣S∣

whenever Pi(a2, . . . , am) = 0. On the other hand, if Pi(a2, . . . , am) ≠ 0, [complete the proof].

Hence, the total probability is given by

P [P (a1, . . . , an) = 0] ≤ d − i

∣S∣ +
i

∣S∣ =
d

∣S∣ ,

which completes the induction proof.

This means that, as we increase the size of the field that we’re working over, the probability that
a randomly chosen vector (a1, . . . , an) is simply a root of a non-zero polynomial goes to zero. In
particular, if we take the set S to have size twice the degree of our polynomial P , then indeed we can
bound the probability of a false-positive by 1/2. We can keep reducing this probability to any value
by repeating the trials.

Theorem. If the polynomial identity testing problem is in P, then either the permanent matrix problem is
not

8.7.2 Pseudorandom Generators and the Nisan-Wigderson Construction

25 An Invitation to Algorithm Design and Analysis


